首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The morphology of conductive nanocomposites consisting of low concentration of single-wall carbon nanotubes (SWNT) and polystyrene (PS) has been studied using atomic force microscopy (AFM), transmission electron microscopy (TEM) and, in particular, scanning electron microscopy (SEM). Application of charge contrast imaging in SEM allows visualization of the overall SWNT dispersion within the polymer matrix as well as the identification of individual or bundled SWNTs at high resolution. The contrast mechanism involved will be discussed. In conductive nanocomposites the SWNTs are homogeneously dispersed within the polymer matrix and form a network. Beside fairly straight SWNTs, strongly bended SWNTs have been observed. However, for samples with SWNT concentrations below the percolation threshold, the common overall charging behavior of an insulating material is observed preventing the detailed morphological investigation of the sample.  相似文献   

2.
Zink T  Deng Z  Chen H  Yu L  Liu FT  Liu GY 《Ultramicroscopy》2008,109(1):22-31
Atomic force microscopy (AFM) enables high-resolution three-dimensional (3D) imaging of cultured bone marrow-derived mast cells. Cells were immobilized by a quick centrifugation and fixation to preserve their transient cellular morphologies followed by AFM characterization in buffer. This "fix-and-look" approach preserves the structural integrity of individual cells. Well-known membrane morphologies, such as ridges and microvilli, are visualized, consistent with prior electron microscopy observations. Additional information including the 3D measurements of these characteristic features are attained from AFM topographs. Filopodia and lamellopodia, associated with cell spreading, were captured and visualized in three dimensions. New morphologies are also revealed, such as high-density ridges and micro-craters. This investigation demonstrates that the "fix-and-look" approach followed by AFM imaging provides an effective means to characterize the membrane structure of hydrated cells with high resolution. The quantitative imaging and measurements pave the way for systematic correlation of membrane structural features with the biological status of individual cells.  相似文献   

3.
Most cellular organelles are highly dynamic and continuously undergo membrane fission and fusion to mediate their function. Documenting organelle dynamics under physiological conditions, therefore, requires high temporal resolution of the recording system. Concurrently, these structures are relatively small and determining their substructural organization is often impossible using conventional microscopy. Structured Illumination Microscopy (SIM) is a super resolution technique providing a two‐fold increase in resolution. Importantly, SIM is versatile because it allows the use of any fluorescent dye or protein and, hence, is highly applicable for cell biology. However, similar to other SR techniques, the applicability of SIM to high‐speed live cell imaging is limited. Here we present an easy, straightforward methodology for coupling of high‐speed live cell recordings, using spinning disk (SD) microscopy, with SIM. Using this simple methodology, we are able to track individual mitochondrial membrane fission and fusion events in real time and to determine the network connectivity and substructural organization of the membrane at high resolution. Applying this methodology to other cellular organelles such as, ER, golgi, and cilia will no doubt contribute to our understanding of membrane dynamics in cells. Microsc. Res. Tech. 78:777–783, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

4.
Understanding the dynamic properties of cellular proteins in live cells and in real time is essential to delineate their function. In this context, we introduce the Fluorescence Recovery After Photobleaching‐Photoactivation unit (Andor) combined with the Nikon Eclipse Ti E Spinning Disk (Andor) confocal microscope as an advantageous and robust platform to exploit the properties of the Dendra2 photoconvertible fluorescent protein (Evrogen) and analyse protein subcellular trafficking in living cells. A major advantage of the spinning disk confocal is the rapid acquisition speed, enabling high temporal resolution of cellular processes. Furthermore, photoconversion and imaging are less invasive on the spinning disk confocal as the cell exposition to illumination power is reduced, thereby minimizing photobleaching and increasing cell viability. We have tested this commercially available platform using experimental settings adapted to track the migration of fast trafficking proteins such as UBC9, Fibrillarin and have successfully characterized their differential motion between subnuclear structures. We describe here step‐by‐step procedures, with emphasis on cellular imaging parameters, to successfully perform the dynamic imaging and photoconversion of Dendra2‐fused proteins at high spatial and temporal resolutions necessary to characterize the trafficking pathways of proteins.  相似文献   

5.
Carbon nanotubes (CNTs) have become an important nano entity for biomedical applications. Conventional methods of their imaging, often cannot be applied in biological samples due to an inadequate spatial resolution or poor contrast between the CNTs and the biological sample. Here we report a unique and effective detection method, which uses differences in conductivities of carbon nanotubes and HeLa cells. The technique involves the use of a helium ion microscope to image the sample with the surface charging artefacts created by the He+ and neutralised by electron flood gun. This enables us to obtain a few nanometre resolution images of CNTs in HeLa Cells with high contrast, which was achieved by tailoring the He+ fluence. Charging artefacts can be efficiently removed for conductive CNTs by a low amount of electrons, the fluence of which is not adequate to discharge the cell surface, resulting in high image contrast. Thus, this technique enables rapid detection of any conducting nano structures on insulating cellular background even in large fields of view and fine spatial resolution. The technique demonstrated has wider applications for researchers seeking enhanced contrast and high‐resolution imaging of any conducting entity in a biological matrix – a commonly encountered issue of importance in drug delivery, tissue engineering and toxicological studies.  相似文献   

6.
Scanning near-field optical microscopy (SNOM) has been employed to simultaneously acquire high-resolution fluorescence images along with shear-force atomic force microscopy from cell membranes. Implementing such a technique overcomes the limits of optical diffraction found in standard fluorescence microscopy and also yields vital topographic information. The application of the technique to investigate cell-cell adhesion has revealed the interactions of filopodia and their functional relationship in establishing adherens junctions. This has been achieved via the selective tagging of the cell adhesion protein, E-cadherin, by immunofluorescence labelling. Two labelling routes were explored; Alexa Fluor 488 and semiconductor quantum dots. The quantum dots demonstrated significantly enhanced photostability and high quantum yield making them a versatile alternative to the conventional organic fluorophores often used in such a study. Analysis of individual cells revealed that E-cadherin is predominantly located along the cell periphery but is also found to extend throughout their filopodia. We have demonstrated that with a fully optimised sample preparation methodology, quantum dot labelling in conjunction with SNOM imaging can be successfully applied to interrogate biomolecular localisation within delicate cellular membranes.  相似文献   

7.
Lin PC  Cheng PC  Yu H 《Scanning》2005,27(6):284-292
Multidimensional imaging (MD) of live cells is gaining importance in biomedical research as the commercial availability of confocal, nonlinear optical microscopes, environmental chambers, and specific fluorescence probes grows. One crucial aspect of the MD live cell imaging involves the proper immobilization of cells, which refers to the rapid and sufficient immobilization of cells on the microscope stage, neither disrupting the cellular structure and functions nor affecting the optical properties of the cells and the environments. Conventional cell immobilization methods glue the anchoring cells to coated surfaces, but such methods require centrifugation or extended incubation and are not suitable for cells in suspension. Most of the current three-dimensional (3-D) gels either exhibit unsatisfactory optical properties or have adverse effects on cell functions in culture. Recently, an engineered 3-D microcapsule has been developed that involves the complex coacervation of a positively charged collagen and a negatively charged polymer of 2-hydroxyethyl methacrylate--methacrylic acid--methyl methacrylate (HEMA-MMA-MAA). Hence, confocal imaging of live cells in this engineered 3-D microenvironment was investigated for its optical properties and cellular function compatibility. We report here that this microenvironment facilitates efficient cell immobilization, exhibits good optical properties, and can preserve cellular structures and functions, which will be useful in MD imaging of live cells for various applications.  相似文献   

8.
The study of in vitro perfused individual nephron segments requires a microscope which provides: (1) easy access to the specimen for measurement of cellular solute flux and voltage; (2) an image with high resolution and contrast; (3) optical sectioning of the object at different levels; and (4) rapid recording of the morphological phenomena. This paper describes an example of commercially available apparatus meeting the above requirements, and illustrates its efficiency. The microscope is of the inverted type (Zeiss IM 35) equipped with differential-interference-contrast (DIC) with a long working distance, and an automatically controlled camera system. The microscopic image exhibits cellular and intercellular details in the unstained transporting mammalian nephron segments despite their tubular structure and great thickness and makes obvious function-structure correlations (e.g. cell volume changes); luminal and contraluminal cell borders are well resolved for controlled microelectrode impalement.  相似文献   

9.
Scanning electron microscopy imaging of both suspended single‐walled carbon nanotubes (SWNTs) and contacted SWNTs with Si/SiO2 substrate has been studied in this paper. The voltage contrast has been investigated by supplying external electric field around the samples. The results show that the image contrast of SWNTs attributes to both voltage contrast from the area surrounding SWNTs (tens of nanometres in both sides of the SWNTs) and electron beam induced emission from SWNTs themselves under low primary beam energy. Under high primary beam energy, however, EBIE dominates the image contrast due to the fact that the voltage contrast caused by implanted charges of the SiO2 layer is weakened. Imaging under the primary beam energy lower than 1 keV offers widened diameter of SWNTs, which promises that the SWNTs are observable at very low magnification (lower than 100×). At a larger magnification, however, imaging under the primary beam energy higher than 10 keV can display more realistic images of the SWNTs. In addition, an appropriate external electric field can improve the images.  相似文献   

10.
We describe the simple modification of a confocal Raman imaging microscope to incorporate two ultra-narrow holographic notch filters. The modified microscope rejects the laser excitation line (Rayleigh peak) by a discrimination factor of ~10(11) and allows simultaneous measurements of Stokes/anti-Stokes Raman shifts as close as ~10/20 cm(-1) to the Rayleigh line. The extremely high rejection ratio of the Rayleigh peak results in its intensity becoming comparable to typical Raman scattering signals. This is essential for micro-Raman spectroscopy and imaging in the low-wavenumber region. We illustrate the resulting performance with measurements on silicon/silica, sapphire, sulfur, L-cystine, as well as on single-walled carbon nanotubes (SWNTs). We find that both aggregated (bulk) and individual (deposited on substrate) SWNTs demonstrate strong and broad characteristic Raman features below ~100 cm(-1)-in a region which has remained essentially unexplored in measurements of bulk SWNT samples and which has so far been inaccessible for Raman spectroscopy of individual SWNTs.  相似文献   

11.
Scanning electron microscopy (SEM) has produced a wealth of novel images that have significantly complemented our perception of biological structure and function, derived initially from transmission electron microscopy (TEM) information. SEM is a surface imaging technology, and its impact at the subcellular level has been restricted by reduced resolution in comparison with TEM. Recently, SEM resolution has been considerably improved by the advent of high-brightness sources used in field-emission instruments (FEISEM) which have produced resolution of around 1 nm, virtually equivalent to TEM “working resolution.” Here we review our findings in the use of FEISEM in the imaging of nuclear envelopes and their associated structures, such as nuclear pore complexes, and the relationships of structure and function. FEISEM allows the structurally orientated cell biologist to visualise, directly and in three dimensions, subcellular structure and its modulation with a view to understanding its functional significance.  相似文献   

12.
Carbon nanotube (CNT)-tipped atomic force microscopy (AFM) probes have shown a significant potential for obtaining high-resolution imaging of nanostructure and biological materials. In this paper, we report a simple method to fabricate single-walled carbon nanotube (SWNT) nanoprobes for AFM using the Langmuir–Blodgett (LB) technique. Thiophenyl-modified SWNTs (SWNT-SHs) through amidation of SWNTs in chloroform allowed to be spread and form a stable Langmuir monolayer at the water/air interface. A simple two-step transfer process was used: (1) dipping conventional AFM probes into the Langmuir monolayer and (2) lifting the probes from the water surface. This results in the attachment of SWNTs onto the tips of AFM nanoprobes. We found that the SWNTs assembled on the nanoprobes were well-oriented and robust enough to maintain their shape and direction even after successive scans. AFM measurements of a nano-porous alumina substrate and deoxyribonucleic acid using SWNT-modified nanoprobes revealed that the curvature diameter of the nanoprobes was less than 3 nm and a fine resolution was obtained than that from conventional AFM probes. We also demonstrate that the LB method is a scalable process capable of simultaneously fabricating a large number of SWNT-modified nanoprobes.  相似文献   

13.
In this paper, the Rapid Transfer System (RTS), an attachment to the Leica EMPACT2 high‐pressure freezer, is described as a new tool for special applications within the cryofixation field. The RTS is an automated system that allows for fast processing of samples (<5 s) that make it possible for the first time to use high‐pressure freezing in combination with high time resolution correlative light and electron microscopy. In addition, with a working cycle of 30 s this rapid turn over time allows one to acquire more samples of biopsy material before it deteriorates than with other HPF machines with longer cycle times. With the use of the RTS it was possible to obtain three samples each of four different tissues in 6 min. Together with the finding that 90% of samples of cells grown on sapphire discs were well frozen, the RTS was both fast and reliable. Most important, together with other newly developed accessories, the RTS made it possible to capture specific events occurring live in the cell as observed by light microscopy, to cryofix that sample/event within 4 s, and then to analyze that event at high resolution in the electron microscope with excellent preservation of ultra‐structure. These developments should give us the tools to unravel intracellular processes that can be observed by live cell imaging but are too rare or fast to be picked up by routine EM methods or where the history of a structure is necessary to be able to discern its nature.  相似文献   

14.
Lee JH  Kang WS  Choi BS  Choi SW  Kim JH 《Ultramicroscopy》2008,108(10):1163-1167
Carbon nanotube (CNT)-tipped atomic force microscopy (AFM) probes have shown a significant potential for obtaining high-resolution imaging of nanostructure and biological materials. In this paper, we report a simple method to fabricate single-walled carbon nanotube (SWNT) nanoprobes for AFM using the Langmuir-Blodgett (LB) technique. Thiophenyl-modified SWNTs (SWNT-SHs) through amidation of SWNTs in chloroform allowed to be spread and form a stable Langmuir monolayer at the water/air interface. A simple two-step transfer process was used: (1) dipping conventional AFM probes into the Langmuir monolayer and (2) lifting the probes from the water surface. This results in the attachment of SWNTs onto the tips of AFM nanoprobes. We found that the SWNTs assembled on the nanoprobes were well-oriented and robust enough to maintain their shape and direction even after successive scans. AFM measurements of a nano-porous alumina substrate and deoxyribonucleic acid using SWNT-modified nanoprobes revealed that the curvature diameter of the nanoprobes was less than 3nm and a fine resolution was obtained than that from conventional AFM probes. We also demonstrate that the LB method is a scalable process capable of simultaneously fabricating a large number of SWNT-modified nanoprobes.  相似文献   

15.
Bacterial biofilms play key roles in environmental and biomedical processes, and understanding their activities requires comprehension of their nanoarchitectural characteristics. Electron microscopy (EM) is an essential tool for nanostructural analysis, but conventional EM methods are limited in that they either provide topographical information alone, or are suitable for imaging only relatively thin (<300 nm) sample volumes. For biofilm investigations, these are significant restrictions. Understanding structural relations between cells requires imaging of a sample volume sufficiently large to encompass multiple cells and the capture of both external and internal details of cell structure. An emerging EM technique with such capabilities is bright‐field scanning transmission electron microscopy (BF‐STEM) and in the present report BF‐STEM was coupled with tomography to elucidate nanostructure in biofilms formed by the polycyclic aromatic hydrocarbon‐degrading soil bacterium, Delftia acidovorans Cs1‐4. Dual‐axis BF‐STEM enabled high‐resolution 3‐D tomographic recontructions (6–10 nm) visualization of thick (1250 and 1500 nm) sections. The 3‐D data revealed that novel extracellular structures, termed nanopods, were polymorphic and formed complex networks within cell clusters. BF‐STEM tomography enabled visualization of conduits formed by nanopods that could enable intercellular movement of outer membrane vesicles, and thereby enable direct communication between cells. This report is the first to document application of dual‐axis BF‐STEM tomography to obtain high‐resolution 3‐D images of novel nanostructures in bacterial biofilms. Future work with dual‐axis BF‐STEM tomography combined with correlative light electron microscopy may provide deeper insights into physiological functions associated with nanopods as well as other nanostructures.  相似文献   

16.
Previous work using focused ion beam (FIB) analysis of osteoblasts on smooth and microrough Ti surfaces showed that the average cell aspect ratio and distance from the surface are greater on the rough surface. In order to better interrogate the relationship between individual cells and their substrate using multiple imaging modalities, we developed a method that tracks the same cell across confocal laser scanning microscopy (CLSM) to correlate surface microroughness with cell morphology and cytoskeleton; scanning electron microscopy (SEM) to provide higher resolution for observation of nanoroughness as well as chemical mapping via energy dispersive X‐ray spectroscopy; and transmission electron microscopy (TEM) for high‐resolution imaging. FIB was used to prepare thin sections of the cell‐material interface for TEM, or for three‐dimensional electron tomography. Cells were cultured on laser‐sintered Ti‐6Al‐4V substrates with polished or etched surfaces. Direct cell to surface attachments were observed across surfaces, though bridging across macroscale surface features occurred on rough substrates. Our results show that surface roughness, cell cytoskeleton and gross morphology can be correlated with the cell‐material cross‐sectional interface at the single cell level across multiple high‐resolution imaging modalities. This work provides a platform method for further investigating mechanisms of the cell‐material interface.  相似文献   

17.
Biological studies have relied on two complementary microscope technologies – light (fluorescence) microscopy and electron microscopy. Light microscopy is used to study phenomena at a global scale to look for unique or rare events, and it also provides an opportunity for live imaging, whereas the forte of electron microscopy is the high resolution. Traditionally light and electron microscopy observations are carried out in different populations of cells/tissues and a 'correlative' inference is drawn. The advent of true correlative light-electron microscopy has allowed high-resolution imaging by electron microscopy of the same structure observed by light microscopy, and in advanced cases by video microscopy. Thus a rare event captured by low-resolution imaging of a population or transient events captured by live imaging can now also be studied at high resolution by electron microscopy. Here, the potential and difficulties of this approach, along with the most impressive breakthroughs obtained by these methods, are discussed.  相似文献   

18.
Live cell imaging has become an indispensable technique for cell biologists. However, when grown on coverslip glass used for live cell imaging many cultured cells move even during relatively short observation times and focus can drift as a result of mechanical instabilities and/or temperature fluctuations. Time‐lapse imaging therefore requires constant adjustment of the imaging field and focus position to keep the cell of interest centred in the imaged volume. We show here that this limitation can be overcome by tracking cells in a fully automated way using the mass centre of cellular fluorescence. Combined with automated multiple location revisiting, this method dramatically increases the throughput of high‐resolution live cell imaging experiments.  相似文献   

19.
Materials such as Si3N4, SiC and SrTiO3 can have grain boundaries characterized by the presence of a thin intergranular amorphous film of nearly constant thickness, in some cases (e.g. Si3N4) almost independent of the orientation of the bounding grains, but dependent on the composition of the ceramic. Microscopy techniques such as high‐resolution lattice fringe imaging, Fresnel fringe imaging and diffuse dark field imaging have been applied to the study of intergranular glassy films. The theme of the current investigation is the use of Fresnel fringes and Fourier filtering for the measurement of the thickness of intergranular glassy films. Fresnel fringes hidden in high‐resolution micrographs can be used to objectively demarcate the glass–crystal interface and to measure the thickness of intergranular glassy films. Image line profiles obtained from Fourier filtering the high‐resolution micrographs can yield better estimates of the thickness. Using image simulation, various kinds of deviation from an ideal square‐well potential profile and their effects on the Fresnel image contrast are considered. A method is also put forth to objectively retrieve Fresnel fringe spacing data by Fourier filtering Fresnel contrast images. Difficulties arising from the use of the standard Fresnel fringe extrapolation technique are outlined and an alternative method for the measurement of the thickness of intergranular glassy films, based on zero‐defocus (in‐focus) Fresnel contrast images is suggested. The experimental work is from two ceramic systems: Lu‐Mg‐doped Si3N4 and SrTiO3 (stoichiometric and nonstoichiometric). Further, a comparison is made between the standard high‐resolution lattice fringe technique, the standard Fresnel fringe extrapolation technique and the methods of analyses introduced in the current work, to illustrate their utility and merits. Taking experimental difficulties into account, this work is intended to be a practical tool kit for the study of intergranular glassy films.  相似文献   

20.
Three-dimensional maps of cellular metabolic oxidation/reduction states of rabbit cornea in situ were obtained by imaging the fluorescence of the naturally occurring reduced pyridine nucleotides (both reduced nicotinamide-adenine dinucleotide, NADH, and reduced nicotinamide-adenine dinucleotide phosphate, NADPH, denoted here as NAD(P)H). Autofluorescence images with submicrometre lateral resolution were obtained throughout the entire 400 μm thickness of the cornea. Two-photon excitation scanning laser microscopy with near-infrared excitation provided high fluorescence collection efficiency, reduced photodamage, and eliminated ultraviolet chromatic aberration, all of which have previously degraded the visualization of pyridine nucleotide fluorescence. Sharp autofluorescence images of the basal epithelium (40 μm within the cornea) show substantial subcellular detail, providing the ability to monitor autofluorescence intensity changes over time, which reflect changes in oxidative metabolism and cellular dynamics necessary for maintenance of the ocular surface. The autofluorescence was confirmed to be mostly of NAD(P)H origin by cyanide exposure, which increased the fluorescence from all cell types in the cornea by about a factor of two. Autofluorescence images of individual keratocytes in the stroma were observed only after cyanide treatment, while in the predominant extracellular collagen (> 90% of the stromal volume), fluorescence was not distinguished from the background. Observation of keratocyte metabolism demonstrates the sensitivity made available by two-photon microscopy for future redox fluorescence imaging of cellular metabolic states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号