首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Au nanodots can be utilized for the fabrication of protein nanoarrays. Au nanodots were fabricated on ITO glass by the thermal evaporation method using nanoporous alumina as a shadow mask. Uniform Au nanodots with a diameter of 60 nm were formed on the ITO glass as a replica of the alumina mask. The morphology of the Au nanodots was verified by Field Emission Scanning Electron Microscopy (FE-SEM). Cysteine-modified azurins were immobilized on the Au nanodots. The topography of the proteins immobilized on the Au nanodots was investigated by atomic force microscopy (AFM) in tapping mode. These Au dot arrays can be potentially utilized as usable elements to construct nanobiochips.  相似文献   

2.
Characterizing electrochemical polymerization of polypyrrole film on a substrate depends on many parameters. Among them, potential difference and cumulative charges play important role. The level of potential difference affects the quality of the polypyrrole. On the contrary, cumulative charge affects the thickness of the polypyrrole. The substrate surface is adjusted physically and chemically by treating with sandblasting and the addition of thiol for surface adhesion improvement. Experimental results show that the sandblasted and thiol treated substrate provides better adhesion than non-sandblasted and non-thiol treated substrate.  相似文献   

3.
A novel method for measuring an adhesion force of single yeast cell is proposed based on a nanorobotic manipulation system inside an environmental scanning electron microscope (ESEM). The effect of ambient humidity on a single yeast cell adhesion force was studied. Ambient humidity was controlled by adjusting the chamber pressure and temperature inside the ESEM. It has been demonstrated that a thicker water film was formed at a higher humidity condition. The adhesion force between an atomic force microscopy (AFM) cantilever and a tungsten probe which later on known as a substrate was evaluated at various humidity conditions. A micro-puller was fabricated from an AFM cantilever by use of focused ion beam (FIB) etching. The adhesion force of a single yeast cell (W303) to the substrate was measured using the micro-puller at the three humidity conditions: 100%, 70%, and 40%. The results showed that the adhesion force between the single yeast cell and the substrate is much smaller at higher humidity condition. The yeast cells were still alive after being observed and manipulated inside ESEM based on the result obtained from the re-culturing of the single yeast cell. The results from this work would help us to understand the ESEM system better and its potential benefit to the single cell analysis research.  相似文献   

4.
Jin H  Ma S  Song B  Ma L  Pi J  Chen X  Chen Y  Cai J 《Scanning》2011,33(6):413-418
Gene transfer has been proven to be a promising approach for treatment of several diseases. The cytotoxicity of transfection reagents is one of the key factors for clinical applications. The cytotoxicity of liposome has been extensively studied. However, its effects on the adhesion and spreading of transformed cells are still unclear. In this study, the cytotoxic effects of liposome on cell viability and mitochondrial membrane potential of HEK293 cells were first evaluated. Then, an atomic force microscope (AFM) was recruited to investigate the effects of liposome on the adhesion and spreading of HEK293 cells. AFM data indicated that liposome induced a significant decrease in number of cellular pseudopodia and cell-surface particles, in cell-surface roughness, and in average adhesion force of cell membranes. The AFM data implied that liposome impaired the adhesion and spreading of HEK293 cells.  相似文献   

5.
A human hepatoma cell line (HepG2) was cultured on positively and negatively charged polyelectrolytes. Cell/surface adhesion and cell shape evolution were followed with quartz microbalance with dissipation (QCM‐D) and optical microscopy as a function of time, respectively. In particular, substrates coated with poly(ethyleneimine) (PEI) led to fast cell attachment and further spreading, with average maximum frequency Δf = 79 Hz and dissipation ΔD = 40 × 10?6. On the contrary, no cell spreading was observed on poly(sodium‐4‐styrenesulfonate) (PSS), with Δf = 33 Hz and ΔD = 4.5 × 10?6. Atomic force microscopy (AFM) was used to investigate the influence of cell shape on its mechanical properties. Considering the cells as an homogenous solid material, the corresponding elastic modulus was estimated using the Hertz model. The elastic modulus was calculated at the central part of the cell, and the average values obtained were 191 ± 14 Pa and 941 ± 58 Pa for cells adsorbed on PSS and PEI, respectively. Thus, different cell–substrate interaction implied different cell mechanical properties reflected in a higher elastic modulus for stronger cell/substrate interaction. The combination of QCM‐D, AFM, and optical microscopy allowed the online study of the cell adhesion process, and the mechanical properties of the adhered cells. Microsc. Res. Tech. 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

6.
In this study, we have used atomic force microscopy (AFM) to study the morphology and mechanical property changes of Jurkat cells exposed to different concentrations of Artesunate (ART) for 24 h at single cellular level. Cell viability and proliferation assays were performed by using the Cell Counting Kit‐8. The concentration of ART, which resulted in the inhibition rate >50% was selected. The AFM images revealed that the cell membrane changed and the ultrastructure also became complex. Mechanical properties of individual cell were tracked with AFM‐based force spectroscopy. The force curves revealed that when a cell was exposed to the ART, the mechanical properties changed obviously. Treated cells had a lower adhesion force of 416.8±37.9 pN, whereas control group had a higher adhesion force of 1064.2±97.0 pN. The Young's modulus decreased to nearly one‐third, from control group of 0.648±0.037 kPa to treated group of 0.254±0.035 kPa and the stiffness increased to nearly 1.5 times, from control group of 1.231±0.084 mN/m to treated group of 1.917±0.137 mN/m. These results suggest that ART can inhibit the proliferation of Jurkat and induce changes in the morphological structure and mechanical properties of Jurkat cells. The high resolution and high sensitivity of AFM can be used to detect morphological and mechanical properties of cells exposed to ART. The AFM may be developed to be a useful tool for detecting the cell death and evaluating the anti‐carcinogen efficacy against tumor cell. SCANNING 31: 83–89, 2009. © 2009 Wiley Periodicals, Inc.  相似文献   

7.
Since the way that human bone cells behave on contact with different surfaces topographies seems to be crucial to osseointegration, the aim of the present study is to evaluate the participation of some micro‐ and nanosized features of Ti surfaces in the short‐term response of primary human osteoblast‐like cells (HOC). Surfaces were prepared as ground (G‐Ti), hydrofluoric acid etched (HF‐Ti), and sandblasted/HF‐etched (SLA‐Ti), and analyzed using both three‐dimensional (3D) profilometer and atomic force microscope (AFM). Cell morphology was assessed using scanning electron microscopy (SEM) after 4 and 24 h in culture. Cell viability, adhesion, and spreading were also evaluated 4 and 24 h after seeding over each surface. Data were compared by analysis of variance (ANOVA) complemented by Duncan test. Cell morphology, cell counting, and membrane integrity (Neutral Red, NR) were not affected by surface treatment at any time. However, HF‐Ti presented the smallest surface area and did not increase tetrazolium hydroxide (XTT) reduction from 4 to 24 h. On the other hand, a higher level of spreading was only found on the rougher and isotropic SLA‐Ti at 4 h. In conclusion, although all evaluated Ti surfaces allowed HOC short‐term adhesion, the finer topography introduced by HF as single treatment did not favor HOC mitochondrial activity and spreading. The rougher and more complex SLA surface seems to provide a better substrate for HOC short‐term response. SCANNING 34: 378‐386, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

8.
The transforming growth factor β1 (TGF-β1) is a human cytokine which has been demonstrated to modulate cell surface integrin repertoire. In this work integrin expression in response to TGF-β1 stimulation has been investigated on the surface of human osteoblast-like cells. We used atomic force microscopy (AFM) and confocal laser scanning microscopy to assess integrin expression and to evaluate their distribution over the dorsal side of the plasma membrane. AFM probes have been covalently functionalised with monoclonal antibodies specific to the β1 integrin subunit. Force curves have been collected in order to obtain maps of the interaction between the immobilized antibody and the respective cell membrane receptors. Adhesion peaks have been automatically detected by means of an ad hoc developed data analysis software. The specificity of the detected interactions has been assessed by adding free antibody in the solution and monitoring the dramatic decrease in the recorded interactions. In addition, the effect of TGF-β1 treatment on both the fluorescence signal and the adhesion events has been tested. The level of expression of the β1 integrin subunit was enhanced by TGF-β1. As a further analysis, the adhesion force of the single living cells to the substrate was measured by laterally pushing the cell with the AFM tip and measuring the force necessary to displace it. The treatment with TGF-β1 resulted in a decrease of the cell/substrate adhesion force. Results obtained by AFM have been validated by confocal laser scanning microscopy thus demonstrating the high potential of the AFM technique for the investigation of cell surface receptors distribution and trafficking at the nanoscale.  相似文献   

9.
In this paper, camphor sulfonic acid doped polypyrrole have been successfully prepared using different weight percentages of camphor sulfonic acid (10–50%) dispersed in polypyrrole by solid state synthesis method. Films of CSA doped PPy were prepared by spin coating technique on a glass substrate. The effect of varying concentrations of CSA on the structure, morphology, optical and electrical properties of polypyrrole was explored using X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) atomic force microscopy (AFM), UV–visible spectroscopy and two probe technique respectively. The presence of CSA in PPy matrix and their interaction was confirmed by using XRD and FTIR techniques. The dramatic change in the surface morphology has been observed with increasing content of CSA in PPy matrix. The AFM study shows porous uniform globular morphology. The UV–vis spectra of CSA doped PPy film was found to shift to a lower wavelength side as compared to those of observed in PPy, indicating synergetic interaction between dopant CSA and PPy. CSA doped PPy not only can maintain a good solubility but also enhance the electrical conductivity. The results of dc electrical conductivity shows that, increase in electrical conductivity of PPy with increasing content of CSA (10–50%) in PPy matrix.  相似文献   

10.
This article presents the construction of scaffolds composed of polylactic acid (PLA) with different concentrations of hydroxyapatite (HA) by electrospinning, which were superficially modified with polypyrrole (PPy/I) by plasma polymerization. A preliminary study was conducted of the biological and mechanical behavior of the scaffolds when they were implanted in the back of rabbits for 30 days; bone cells differentiated from mesenchymal stem cells (MSCs) were used. The bone cell and scaffold structures were characterized by histological, immunohistochemical, and mechanical stress tests. Hematoxylin–eosin staining showed good tissue conformation. The immunohistochemical tests highlighted the presence of the main bone tissue proteins, such as collagen, osteocalcin, and osteopontin. The PLA/HA scaffolds were observed to exhibit cell adhesion and proliferation properties; however, the response was much better in the scaffolds that had a higher concentration of HA and that were coated with PPy/I. The results of the mechanical tests of the scaffolds indicated that the plasma treatment improved the adhesion and cell proliferation properties and contributed to the mechanical support, allowing the formation of neotissues with good viability of cell growth.  相似文献   

11.
Atomic Force Microscopy (AFM) has proven itself over recent years as an essential tool for the analysis of microbial systems. This article will review how AFM has been used to study microbial systems to provide unique insight into their behavior and relationship with their environment. Immobilization of live cells has enabled AFM imaging and force measurement to provide understanding of the structure and function of numerous microbial cells. At the macromolecular level AFM investigation into the properties of surface macromolecules and the energies associated with their mechanical conformation and functionality has helped unravel the complex interactions of microbial cells. At the level of the whole cell AFM has provided an integrated analysis of how the microbial cell exploits its environment through its selective, adaptable interface, the cell surface. In addition to these areas of study the AFM investigation of microbial biofilms has been vital for industrial and medical process analysis. There exists a tremendous potential for the future application of AFM to microbial systems and this has been strengthened by the trend to use AFM in combination with other characterization methods, such as confocal microscopy and Raman spectroscopy, to elucidate dynamic cellular processes. SCANNING 32: 134–149, 2010. © 2010 Wiley Periodicals, Inc.  相似文献   

12.
目的:探讨原子力显微镜(AFM)在研究人脐静脉内皮细胞(ECV304)表面形貌、超微结构及纳米机械性质等方面的应用,讨论ECV304超微结构和机械性质与其功能的关系。方法:利用AFM对ECV304细胞的表面形貌及生物机械性质进行表征与测量。结果:在AFM下观察到用普通光学显微镜难以观察到的ECV304细胞的独特的形态结构,如细胞骨架、伪足及细胞边缘微丝等。ECV304细胞呈现长梭形、多角形、圆形等多种形态,细胞表面平均粗糙度为320.52±75.98 nm,表面均匀分布微绒毛,细胞周围有铺展的圆盘状物质。力曲线定量分析得出针尖与细胞表面的非特异性粘附力为75±14 pN。结论:通过AFM成像和力曲线测量表明,ECV304细胞呈圆形,多角形,梭形等多种形态,针尖与细胞膜表面问的粘附力比较小,约75±14pN。  相似文献   

13.
We present a novel atomic force microscope (AFM) system, operational in liquid at variable gravity, dedicated to image cell shape changes of cells in vitro under hypergravity conditions. The hypergravity AFM is realized by mounting a stand-alone AFM into a large-diameter centrifuge. The balance between mechanical forces, both intra- and extracellular, determines both cell shape and integrity. Gravity seems to be an insignificant force at the level of a single cell, in contrast to the effect of gravity on a complete (multicellular) organism, where for instance bones and muscles are highly unloaded under near weightless (microgravity) conditions. However, past space flights and ground based cell biological studies, under both hypogravity and hypergravity conditions have shown changes in cell behaviour (signal transduction), cell architecture (cytoskeleton) and proliferation. Thus the role of direct or indirect gravity effects at the level of cells has remained unclear. Here we aim to address the role of gravity on cell shape. We concentrate on the validation of the novel AFM for use under hypergravity conditions. We find indications that a single cell exposed to 2 to 3 ×  g reduces some 30–50% in average height, as monitored with AFM. Indeed, in situ measurements of the effects of changing gravitational load on cell shape are well feasible by means of AFM in liquid. The combination provides a promising technique to measure, online, the temporal characteristics of the cellular mechano-response during exposure to inertial forces.  相似文献   

14.
In this study we have employed atomic force microscopy (AFM) and scanning near‐field optical microscopy (SNOM) techniques to study the effect of the interaction between human keratinocytes (HaCaT) and electromagnetic fields at low frequency. HaCaT cells were exposed to a sinusoidal magnetic field at a density of 50 Hz, 1 mT. AFM analysis revealed modification in shape and morphology in exposed cells with an increase in the areas of adhesion between cells. This latter finding was confirmed by SNOM indirect immunofluorescence analysis performed with a fluorescent antibody against the adhesion marker β4 integrin, which revealed an increase of β4 integrin segregation in the cell membrane of 50‐Hz exposed cells, suggesting that a higher percentage of these cells shows a modified pattern of this adhesion marker.  相似文献   

15.
The integrity and adhesion properties of endothelium play vital roles during atherosclerosis. It is well known that oxidized low‐density lipoprotein (Ox‐LDL) influences many physiological activities or mechanical properties of endothelial cells. However, the effects of Ox‐LDL on the integrity and nonspecific adhesion properties of endothelial cells are still unclear. In this study, using the topographical imaging and force measurement functions of atomic force microscopy (AFM), we found that Ox‐LDL can transiently weaken the integrity of endothelium by impairing cell spreading of endothelial cells and decrease the attachment of irrelevant blood cells to endothelium by impairing the nonspecific adhesion property of endothelial cells. The AFM‐based data provide important information for understanding the effects of Ox‐LDL on endothelial cells or during atherogenesis. SCANNING 35: 119‐126, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

16.
The poor integration with host cornea tissue and the low mechanical properties of pHEMA hydrogel for artificial cornea remains a difficult problem to solve. A modified pHEMA hydrogel, MMA copolymerized and type‐I collagen and bFGF immobilized, was previously prepared in an attempt to solve the problems. In this study, the cytotoxicity of Col/bFGF‐p (HEMA‐MMA) and p (HEMA‐MMA) was studied by cell adhesion assay and atomic force microscopy (AFM). The results of cell adhesion assay show that the attachment of keratocytes on the modified membrane is much higher than that of the unmodified membrane. This indicates that the material after modification have better cell–material interaction. The AFM images reveal that the morphology of keratocytes cultured on different substrate is obviously different. The cell cultured on modified membrane presented a completely elongated and spindle‐shape morphology. The force?distance indicates that the biomechanical of keratocytes changes significantly after culturing on different substrates. The adhesion force (2328±523 pN) and Young's modulus (0.51±0.125 kPa) of the cell cultured on modified membrane are much higher, and the stiffness (0.08±0.022 mN/m) is lower than those of the cell cultured on unmodified membrane. These results show that the cytotoxicity of Col/bFGF‐p (HEMA‐MMA) for keratocytes is much improved. SCANNING 31: 246–252, 2009. © 2010 Wiley Periodicals, Inc.  相似文献   

17.
Due to its extensive antitumor activity, curcumin has been focused on by more researchers. But, its antiproliferative mechanisms are still unknown. Here we studied the antiproliferative activity of curcumin in human liver cancer HepG2 cells. In order to analyze the cytotoxic activity and anticancer mechanisms of curcumin, we carried out cytotoxicity tests using 3‐[4,5‐dimethyl‐2‐thiazolyl]‐2,5 diphenyltetrazolium bromide (MTT) assay. The HepG2 cell cycle distribution and the expression of tubulin were detected by flow cytometry. Alterations in morphological and cytoskeletal properties of HepG2 cells were investigated using atomic force microscopy (AFM). Simultaneously, the effects of curcumin on the growth and proliferation of HepG2 cells were also assayed by MTT method. Cells were incubated with different doses of curcumin (0–80 μmol/l) for 24 h, the cell viability decreased from 91.10 ± 3.2% to 10.84 ± 4.0%, and the 50% inhibiting concentration (IC50) was 23.15 ± 0.37 μmol/l. Moreover, flow cytometry quantitatively detected that curcumin treatment resulted in a dose‐dependent accumulation of HepG2 cells in G2/M phase with concomitant losses from G0/G1 phase, so curcumin caused cell‐cycle arrest at G2/M phase. Furthermore, we discovered that curcumin was able to upregulate the expression of tubulin in HepG2 cells. In addition, AFM analysis including cell‐membrane structure and cytoskeleton networks is helpful to explain the relationship between the changes of cells and external pharmacologic stimulation. SCANNING 35: 253‐260, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

18.
A novel atomic force microscope (AFM) operating in liquid is described in this article. The specially designed AFM probe involves a tip attached to a cantilever, a tip holder, and a circular Plexiglas window. When the probe dives into the fluid, a circular meniscus is established around the Plexiglas window, preventing the tip from being affected or destroyed by surface tension of the liquid. In this setup, the whole scanning probe and the sample can completely dive into fluid. Meanwhile, the probe tip scans over the sample surface when the instrument works. These advantages enable the instrument to scan comparatively large or heavy samples with a high speed. The highest scan rate is about 30 lines/s or 14 s for a 400 x 400-pixel, 3 x 3 microm image. Using the new AFM, we carry out in-situ investigation of the formation processes of porous alumina during electrochemical anodic oxidation. A lead ring and an aluminum foil serve as cathode and anode, respectively. They are entirely immersed in the bath electrolyte, which is oxalic acid solution. During anodic oxidation, the AFM images of the sample surface are successively acquired without elevating the sample out of the solution. Experiments reveal that electrochemical reactions take place soon after the power supply is switched on, and with the progression of anodization, nanostructures of porous alumina gradually occur on the aluminum substrate, finally yielding ordered arrays of nanopores. As a typical example of applications, the results of this work show that the new AFM is an ideal and powerful tool for in-situ observation and study of materials or samples in aqueous solutions.  相似文献   

19.
20.
设计了针对薄膜太阳能电池柔性不锈钢衬底的电化学机械复合抛光法以满足其对表面粗糙度、光反射率和有害物质扩散的要求。首先,设计并制造了一种用于平面加工的复合阴极刀具,理论分析了它的材料去除机理。然后,结合法拉第原理和黏着摩擦理论分析了电化学腐蚀行为和摩擦力作用行为,解决了电化学腐蚀和机械去除钝化膜的匹配一致性问题。最后,以50mm×50mm×0.3mm规格的304不锈钢为阳极工件,对提出的方法进行了实验验证。结果显示:对衬底加工20min后,其表面粗糙度Ra从124nm降到10nm;表面反射率从加工前的56.8%提高到62.4%;表面金属氧化层的形成(氧化铁和氧化铬),有效阻挡了Fe和Cr离子的扩散。实验显示,提出的方法是处理柔性不锈钢表面的有效方法,成本低、效率高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号