首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An approach is formulated for the automated acquisition of process selection and within-feature process sequencing knowledge from examples using neural networks. Network architecture, problem representation and performance issues are discussed.  相似文献   

2.
Identification of process disturbance using SPC/EPC and neural networks   总被引:3,自引:0,他引:3  
Since solely using statistical process control (SPC) and engineering process control (EPC) cannot optimally control the manufacturing process, lots of studies have been devoted to the integrated use of SPC and EPC. The majority of these studies have reported that the integrated approach has better performance than that by using only SPC or EPC. Almost all these studies have assumed that the assignable causes of process disturbance can be identified and removed by SPC techniques. However, these techniques are typically time-consuming and thus make the search hard to implement in practice. In this paper, the EPC and neural network scheme were integrated in identifying the assignable causes of the underlying disturbance. For finding the appropriate setup of the networks' parameters, such as the number of hidden nodes and the suitable input variables, the all-possible-regression selection procedure is applied. For comparison, two SPC charts, Shewhart and cumulative sum (Cusum) charts were also developed for the same data sets. As the results reveal, the proposed approaches outperform the other methods and the shift of disturbance can be identified successfully.  相似文献   

3.
A review of neural networks for statistical process control   总被引:6,自引:2,他引:6  
This paper aims to take stock of the recent research literature on application of Neural Networks (NNs) to the analysis of Shewhart's traditional Statistical Process Control (SPC) charts. First appearing in the late 1980s, most of the literature claims success, great or small, in applying NNs for SPC (NNSPC). These efforts are viewed in this paper as useful steps towards automatic on-line SPC for continuous improvement of quality and for real-time manufacturing process control. A standard NN approach that can parallel the universality of the traditional Shewhart charts has not yet been developed or adopted, although knowledge in this area is rapidly increasing. This paper attempts to provide a practical insight into the issues involved in application of NNs to SPC with the hope of advancing the use of NN techniques and facilitating their adoption as a new and useful aspect of SPC. First, a brief review of control chart analysis prior to the introduction of NN technology is presented. This is followed by an examination and classification of the NNSPC existing literature. Next, an extensive discussion of implementation issues with reference to significant research papers is presented. Finally, after summarising the survey, a set of general guidelines for future applications of NNs to SPC is outlined.  相似文献   

4.
A neural-network-based direct control architecture is presented that achieves output tracking for a class of continuous-time nonlinear plants, for which the nonlinearities are unknown. The controller employs neural networks to perform approximate input/output plant linearization. The network parameters are adapted according to a stability principle. The architecture is based on a modification of a method previously proposed by the authors, where the modification comprises adding a sliding control term to the controller. This modification serves two purposes: first, as suggested by Sanner and Slotine,1 sliding control compensates for plant uncertainties outside the state region where the networks are used, thus providing global stability; second, the sliding control compensates for inherent network approximation errors, hence improving tracking performance. A complete stability and tracking error convergence proof is given and the setting of the controller parameters is discussed. It is demonstrated that as a result of using sliding control, better use of the network's approximation ability can be achieved, and the asymptotic tracking error can be made dependent only on inherent network approximation errors and the frequency range of unmodelled dynamical modes. Two simulations are provided to demonstrate the features of the control method.  相似文献   

5.
Stochastic and non-deterministic influences have an effect on cutting processes and lead to an unsteady and dynamic process behaviour. Concepts for the improvement of process reliability and for the control of tolerances have to be developed in order to fulfil the increasing requirements on product quality. A concept for the improvement of manufacturing accuracy through artificial neural networks (ANN) will be presented as an example for the turning process. This ANN model makes it possible to predict the dimensional deviation caused by tool wear. Feeding this back in an open loop within the machine controller the deviation can be compensated by using an adaptive control of the depth of cut.  相似文献   

6.
在小波分析和过程神经网络理论的基础上,提出了连续小波过程神经网络模型,其隐层为过程神经元,隐层激活函数采用小波函数.该网络结合了小波变换良好的时一频局域化性质及过程神经网络可以处理连续输入信号的特点,因而学习能力强,精度高.给出了小波过程神经网络学习算法,并以航空发动机滑油系统状态监测为例,分别利用传统BP网络和小波过程神经网络进行预测.结果表明,小波过程神经网络收敛速度快,精度高,优于BP网络的预测能力,同时也为航空发动机滑油系统状态监测问题提供了一种有效的方法.  相似文献   

7.
应用NeurOn-Line神经元网络应用系统开发技术和G2实时智能专家系统开发技术,开发了一套pH中和过程的故障诊断系统。先简单描述了该pH中和过程及其建模,然后详细论述了该故障诊断系统在NeurOn-Line和G2软件平台上的设计和编程开发情况。共进行了pH中和过程的正常运行模式,pH传感器测量值偏高、pH传感器测量值偏低和碱液浓度变稀三种故障模式的仿真和诊断。仿真结果表明该故障诊断系统能快速准确诊断出pH中和过程的正常运行和故障模式。  相似文献   

8.
This paper presents a robust adaptive output feedback control design method for uncertain non-affine non-linear systems, which does not rely on state estimation. The approach is applicable to systems with unknown but bounded dimensions and with known relative degree. A neural network is employed to approximate the unknown modelling error. In fact, a neural network is considered to approximate and adaptively make ineffective unknown plant non-linearities. An adaptive law for the weights in the hidden layer and the output layer of the neural network are also established so that the entire closed-loop system is stable in the sense of Lyapunov. Moreover, the robustness of the system against the approximation error of neural network is achieved with the aid of an additional adaptive robustifying control term. In addition, the tracking error is guaranteed to be uniformly and asymptotically stable, rather than uniformly ultimately bounded, by using this additional control term. The proposed control algorithm is relatively straightforward and no restrictive conditions on the design parameters for achieving the systems stability are required. The effectiveness of the proposed scheme is shown through simulations of a non-affine non-linear system with unmodelled dynamics, and is compared with a second-sliding mode controller.  相似文献   

9.
Today's manufacturing methods are caught between the growing need for quality, high process safety, minimal manufacturing costs, and short manufacturing times. In order to meet these demands, process setting parameters have to be chosen in the best possible way, according to demand on quality. For such optimization it is necessary to represent the processes in a model. Due to the enormous complexity of many processes and the high number of influencing parameters, however, conventional approaches to modelling and optimization are no longer sufficient. In this article it is shown how, by means of applying neural networks for process modelling, even these highly complex interdependencies can be learned. That way both process and quality parameters can be assessed before or during processing. By connecting them with corresponding cost models, it is possible to optimize processes with the help of evolutionary algorithms. Using examples of different manufacturing processes, the possi bilities for process modelling and optimization with neural networks and evolutionary algorithms are demonstrated.  相似文献   

10.
基于神经网络的垃圾焚烧炉过程控制   总被引:1,自引:1,他引:0  
人工操作排除垃圾焚烧炉故障对操作员要求较高,且自动化程度低.应用BP神经网络方法,采用madab软件编程建立垃圾焚烧炉过程控制模型,对垃圾焚烧炉两种典型故障的排除进行研究.在过程控制模型的建立过程中,采用神经网络集成,提高神经网络模型的泛化能力.最后以49组实际工况数据作为检验样本,检验误差率为7.612%和6.429%.检验结果表明神经网络集成可以提高模型的计算精度,该模型可以用于垃圾焚烧炉过程控制,提高设备的自动化程度.  相似文献   

11.
Recently, there has been a considerable amount of interest and practice in solving many problems of several applied fields by fuzzy polynomials. In this paper, we have designed an artificial fuzzified feed-back neural network. With this design, we are able to find a solution of fully fuzzy polynomial with degree n. This neural network can get a fuzzy vector as an input, and calculates its corresponding fuzzy output. It is clear that the input–output relation for each unit of fuzzy neural network is defined by the extension principle of Zadeh. In this work, a cost function is also defined for the level sets of fuzzy output and fuzzy target. Next a learning algorithm based on the gradient descent method will be defined that can adjust the fuzzy connection weights. Finally, our approach is illustrated by computer simulations on numerical examples. It is worthwhile to mention that application of this method in fluid mechanics has been shown by an example.  相似文献   

12.
This paper presents the Generalized Predictive Control (GPC) strategy based on Artificial Neural Network (ANN) plant model. To obtain the step and the free process responses which are needed in the generalized predictive control strategy we iteratively use a multilayer feedforward ANN as a one-step-ahead predictor. A bioprocess was chosen as a realistic nonlinear SISO system to demonstrate the feasibility and the performance of this control scheme. A comparison was made between our approach and the adaptive GPC (AGPC).  相似文献   

13.
This paper introduces a new decentralized adaptive neural network controller for a class of large-scale nonlinear systems with unknown non-affine subsystems and unknown interconnections represented by nonlinear functions. A radial basis function neural network is used to represent the controller’s structure. The stability of the closed loop system is guaranteed through Lyapunov stability analysis. The effectiveness of the proposed decentralized adaptive controller is illustrated by considering two nonlinear systems: a two-inverted pendulum and a turbo generator. The simulation results verify the merits of the proposed controller.  相似文献   

14.
To schedule a job shop, the first task is to select an appropriate scheduling algorithm or rule. Because of the complexity of scheduling problems, no general algorithm sufficient for solving all scheduling problems has yet been developed. Most job-shop scheduling systems offer alternative algorithms for different situations, and experienced human schedulers are needed to select the best dispatching rule in these systems. This paper proposes a new algorithm for job-shop scheduling problems. This algorithm consists of three stages. First, computer simulation techniques are used to evaluate the efficiency of heuristic rules in different scheduling situations. Second, the simulation results are used to train a neural network in order to capture the knowledge which can be used to select the most efficient heuristic rule for each scheduling situation. Finally, the trained neural network is used as a dispatching rule selector in the real-time scheduling process. Research results have shown great potential in using a neural network to replace human schedulers in selecting an appropriate approach for real-time scheduling. This research is part of an ongoing project of developing a real-time planning and scheduling system.  相似文献   

15.
The behavior of a multivariable predictive control scheme based on neural networks applied to a model of a nonlinear multivariable real process, consisting of a pressurized tank is investigated in this paper. The neural scheme consists of three neural networks; the first is meant for the identification of plant parameters (identifier), the second one is for the prediction of future control errors (predictor) and the third one, based on the two previous, compute the control input to be applied to the plant (controller). The weights of the neural networks are updated on-line, using standard and dynamic backpropagation. The model of the nonlinear process is driven to an operation point and it is then controlled with the proposed neural control scheme, analyzing the maximum range over the neural control works properly.  相似文献   

16.
S. Jagannathan  F.L. Lewis 《Automatica》1996,32(12):1707-1712
A novel multilayer discrete-time neural net paradigm is presented for the identification of multi-input multi-output (MIMO) nonlinear dynamical systems. The major novelty of this approach is a rigorous proof of identification error convergence that reveals a requirement for a new identifier structure and nonstandard weight tuning algorithms. The NN identifier includes modified delta rule weight tuning and exhibits a learning-while-functioning feature instead of learning-then-functioning, so that the identification is on-line with no explicit off-line learning phase needed. The structure of the neural net (NN) identifier is derived using a passivity aproach. Linearity in the parameters is not required and certainty equivalence is not used. The notion of persistency of excitation (PE) and passivity properties of the multilayer NN are defined and used in the convergence analysis of both the identification error and the weight estimates.  相似文献   

17.
18.
Reinforcement learning is a learning scheme for finding the optimal policy to control a system, based on a scalar signal representing a reward or a punishment. If the observation of the system by the controller is sufficiently rich to represent the internal state of the system, the controller can achieve the optimal policy simply by learning reactive behavior. However, if the state of the controlled system cannot be assessed completely using current sensory observations, the controller must learn a dynamic behavior to achieve the optimal policy. In this paper, we propose a dynamic controller scheme which utilizes memory to uncover hidden states by using information about past system outputs, and makes control decisions using memory. This scheme integrates Q-learning, as proposed by Watkins, and recurrent neural networks of several types. It performs favorably in simulations which involve a task with hidden states. This work was presented, in part, at the International Symposium on Artificial Life and Robotics, Oita, Japan, February 18–20, 1996  相似文献   

19.
A supervised learning algorithm for quantum neural networks (QNN) based on a novel quantum neuron node implemented as a very simple quantum circuit is proposed and investigated. In contrast to the QNN published in the literature, the proposed model can perform both quantum learning and simulate the classical models. This is partly due to the neural model used elsewhere which has weights and non-linear activations functions. Here a quantum weightless neural network model is proposed as a quantisation of the classical weightless neural networks (WNN). The theoretical and practical results on WNN can be inherited by these quantum weightless neural networks (qWNN). In the quantum learning algorithm proposed here patterns of the training set are presented concurrently in superposition. This superposition-based learning algorithm (SLA) has computational cost polynomial on the number of patterns in the training set.  相似文献   

20.
以智能车辆为研究对象,针对车辆模型存在高度非线性动态特性、参数不确定性以及行驶时受外部干扰较多导致控制精度不高、鲁棒性差等问题,提出了采用径向基函数(RBF)神经网络滑模控制方法.建立2自由度线性车辆模型和自由度非线性整车模型,在传统2自由度车辆控制模型状态方程的基础上推导出新的状态方程并以此设计了相应控制器.利用李雅普诺夫(Lyapunov)稳定性理论推导出神经网络的权,并证明控制系统的稳定性.仿真结果表明:与传统的滑模控制方法相比,该方法控制精度高,有较强的鲁棒性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号