首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effects of heat treatment on the microstructure and mechanical properties of two alloys, namely Al- 12.2%Zn-2.48%Cu-2.0%Mg-0.15%Zr-0. 166%Ag(alloy 1), and Al-9.99%Zn-1.72%Cu-2.5%Mg-0.13%Zr(alloy 2) were investigated. The results show that low temperature aging after promotive solution treatment can increase elongation without the loss of strength for the studied alloys. The optimum aging treatment (T6) for alloy 1 and alloy 2 is 100 ℃/80 h and 100 ℃/48 h, respectively. Compared with other heat treatment alloys, alloy 1 and alloy 2 show super-high tensile strength up to 753 MPa and 788 MPa, remaining 9.3% and 9.7% elongation under T6 condition, respectively. During aging, trace addition of Ag enhances the formations of GP zone and metastable phase, and stabilizes GP zone and metastable phase to a higher temperature. Trace addition of Ag prolongs the aging time of reaching the peak strength and delays over-aging condition of the alloy. However, trace addition of Ag promotes the formation of coarse constituent in the alloy and consumes hardening alloying elements of Zn and Mg. Moreover, the addition of the transition element Zr in 7000 series super-high alloy forms incoherent Al3 Zr dispersoid which can serve as nucleation sites for nonuniform precipitation of η phase during aging process. The higher the aging temperature, the greater the tendency for nonuniform precipitation of η phase.  相似文献   

2.
为了研究Ce元素对T6态Al-7.5Zn-2Mg-2.3Cu-0.1Sc合金显微组织和力学性能的影响,通过改变合金中Ce元素的添加量,采用光学显微镜、扫描电子显微镜和电子万能实验机对合金的显微组织、拉伸断口形貌和力学性能进行了研究.结果表明,加入质量分数为0.2%的Ce元素可以显著细化Al-7.5Zn-2Mg-2.3Cu-0.1Sc合金的铸态和T6态显微组织.在合金的T6处理过程中随着时效时间的增加,合金硬度和抗拉强度均先增加后降低,合金的硬度和抗拉强度峰值分别为216 HB和681.7 MPa,合金最高屈服强度为638.2 MPa.合金拉伸断口呈韧脆混合断裂特征.  相似文献   

3.
The microstructures, tensile properties and compressive creep behaviors of Mg-5%Sn-(0–1.0)%Pb (mass fraction) alloys were studied. The microstructures of the Mg-Sn-Pb alloys consist of dendritic α-Mg and Mg2Sn phase. The addition of Pb can refine the size of Mg2Sn phase and grain size, reduce the amount of Mg2Sn phase at grain or inter-dendrite boundaries and change the distribution of Mg2Sn phase. Pb exists in the Mg2Sn phase or dissolves in α-Mg matrix. The mechanical properties of the tested alloys at room temperature are improved with the addition of Pb. When the Pb content is over 0.5%, the mechanical properties are decreased gradually. The Mg-5%Sn-0.5%Pb shows the best ultimate tensile strength and elongation, 174 MPa and 14.3%, respectively. However, the compressive creep resistance of the Mg-Sn-Pb alloys is much lower than that of the Mg-Sn binary alloy at 175 °C with applied load of 55 MPa, which means that Pb has negative effects on the compressive creep resistance of the as-cast Mg-Sn alloys.  相似文献   

4.
采用液态模锻成型时,为了研究铝合金轮毂不同部位的微观组织和力学性能,利用金相显微镜和拉伸试验机对液态模锻6061铝合金轮毂不同部位的组织及性能进行了研究.结果表明:外轮缘处晶粒最细小,而轮辐部位的晶粒最粗大;外轮缘的抗拉强度和伸长率最高,可以分别达到371 MPa和16%,轮辐部位的抗拉强度强度和伸长率最低,分别为346 MPa和9%.轮辋处的合金晶粒大小不一,且部分晶粒被拉长变形,这是由于该处糊状金属流动产生的冲刷和挤压所致.  相似文献   

5.
为了改善TiAl合金精密铸造用氧化锆陶瓷型壳的退让性,利用电子万能试验机和扫描电子显微镜对添加不同含量碳纤维和尼龙纤维后的型壳退让性进行了测试.结果表明,添加少量碳纤维可以提高型壳湿强度并降低型壳室温和高温干强度,但当所添加碳纤维的质量分数达到10%后,会同时提高型壳的三种强度.当尼龙纤维的质量分数处于10%以内时,型壳三种强度均会降低.当碳纤维的质量分数达到5%时,型壳的湿强度和室温干强度可分别提高51. 9%和20. 7%,高温干强度降低8. 5%,同时改善了型壳的退让性并降低了铸件的裂纹倾向.  相似文献   

6.
The ignition-proof mechanism of ZM5 magnesium alloy added with 0.1% (mass fraction) rare earth (RE) was investigated. The oxide scales and substrates were characterized by scanning electronic microscope (SEM), X-ray diffraction (XRD), energy dispersive spectrometer (EDS) and tensile test. And an oxidation model of ZM5 alloy with RE was established. The results show that the ignition temperature of ZM5 alloy is particularly elevated from 654 to 823 ℃, the microstructure is refined, and the tensile strength i...  相似文献   

7.
2024/3003 gradient aluminum alloy was prepared by semi-continuous casting using double-stream-pou-ring technique. The microstructures of the as-cast, pressed and heat-treated alloys were analyzed by scanning elec-tron microscope and transmission electron microscope. And the mechanical properties of the alloy in pressed and heat-treated states were studied. The results show that the ingots with diameter of 65 mm and external thickness about 5.5 mm are obtained when the temperatures of the melt in the internal and external ladles are 1 023 and 1 003 K, respectively, and the nozzle diameter is 2.0 mm. The microstructures of the as-cast alloy consist of α(AI) θ(CuAl2)q S(Al2CuMg) in the internal region and α(Al) MnAl6 in the external region. The phases found in the internal and external layers coexist in the transition zone. The transition layer is maintained after plastic deformation and heat treatment of the alloy. The tensile strength, yield strength and elongation of the alloy are 300 MPa,132 MPa and 16.0%, respectively, after T6 treatment. The tensile and yield strength are increased by 150.0% and 94.1%, respectively, compared with that of 3003 aluminum alloy. The maximum hardness in the internal region of 2024/3003 gradient aluminum alloy can be increased from HRF 55 in the pressed state to HRF 70 in the heat-treated state.  相似文献   

8.
为了研究Ca元素对Mg-6Al-1Nd合金微观组织、力学性能和阻燃性能的影响规律,采用了金属型重力铸造方法制备了Mg-6Al-1Nd-x Ca合金.通过金相显微镜、扫描电镜、万能拉伸试验机和热分析仪等分析测试手段对Mg-6Al-1Nd-x Ca合金的显微组织、力学性能和阻燃性能进行了表征.结果表明:Ca元素的加入可减少β-Mg17Al12含量,生成Al-Ca金属间相;随着Ca质量分数的增加,镁合金试样中的Al-Ca金属相增多,试样的室温抗拉强度和延伸率降低,阻燃性能升高;不含Ca元素的Mg-6Al-1Nd合金的抗拉强度为235 MPa,当Ca元素增加到2.5%时,Mg-6Al-1Nd-2.5Ca合金的抗拉强度仅为154 MPa,但该合金的着火点可达850℃.  相似文献   

9.
The influence of thermomechanical aging on microstructure and mechanical properties of 2519A aluminum alloy was investigated by means of microhardness test, tensile test, optical microscopy (OM) and transmission electron microscopy (TEM). The results show that 50% cold rolling deformation prior to aging is beneficial since it promotes a more homogeneous distribution of the precipitation phase and reduces the number of precipitation phase on the grain boundaries, and thus shrinks the total volume of precipitation-free zones at grain and sub-grain boundaries. As a result, the tensile properties of 2519A aluminum alloy have been significantly improved.  相似文献   

10.
在400℃下对铸态2524铝合金进行轧制成形,总变形量为90%,采用光学金相显微镜、拉伸试验机等设备检测轧制板材显微组织及力学性能.研究结果表明:随着固溶温度的升高,Al2Cu,Al2CuMg等第二相粒子数量逐渐减少,在490℃~500℃下基本固溶进铝基体中,其显微硬度值随着固溶温度的升高逐渐增大,当固溶温度为490℃时其显微硬度值为131.4 HV;2524铝合金轧制板材经490℃/20 min+190℃/22 h处理后,其抗拉强度为485 MPa,延伸率为13.5%.  相似文献   

11.
In order to obtain an effective and reliable grain refiner for Mg-Al alloys, 1% (mass fraction) Mg3N2 was added into AZ31 Mg alloy. The microstructures of the Mg alloys were studied by optical microscopy, scan electron microscopy and X-ray energy dispersive spectroscopy, and the mechanical properties were determined. The results show that adding a small amount of Mg3N2 to AZ31 Mg alloy can refine the grain size from 103 to 58 μm. The ultimate tensile strength and elongation of AZ31 Mg alloy are 174.1MPa and 8.3%, respectively. After the addition of 1% Mg3N2, the ultimate tensile strength and elongation of AZ31 Mg alloy are increased up to 198.7 MPa and 11.8%, respectively. The grain refinement mechanism is that AIN is formed after Mg3N2 is added. Both AIN and Mg phases are of HCP lattice structure, and the disregistry between Mg phases and AIN along (0001)Mg//(0001)AIN is 3.04%, which is very effective for heterogeneous nucleation.  相似文献   

12.
通过正交试验和单因素试验,考察了Cu、Mg、Zn、Ni和Fe对Al—18Si过共晶铝硅合金室温及高温(350℃)力学性能的影响规律,利用光学金相显微镜(OM)、扫描电镜(SEM)、能谱分析仪(EDX)对合金中富Cu相、富Fe相的组织组成进行了分析.结果表明:Cu、Mg是提高AI-18Si过共晶铝硅舍金室温及高温强度的主要因素;Zn含量增加明显降低合金350℃时的高温强度,改善合金的室温和高温延伸率;Fe降低合金的室温强度,显著提高合金的高温强度;当Cr:Fe=0.35:1,Mn:Cr=2:1,含铁0.8%~1.2%时,Al-18Si-4.0Cu-0.7Mg-0.2Zn-1.0Ni-(0.8~1.2)Fe合金力学性能σb(25℃))310MPa,延伸率受(25℃)≥0.75%,σb(350℃)〉130MPa,延伸率δs(35℃)〉1.5%;合金中富铜相主要以块状Al。Cu相和白灰色花卉状A15Si。cu2Mg8相存在,富铁相主要以三叶草状、树枝状和棒状Al5Si(Cr,Mn,Fe)相存在.  相似文献   

13.
Mechanical properties and tribological behavior of a novel cast heat-resisting copper based alloy are investigated. The corresponding properties of a commercial aluminum bronze C95500 (ASTM B30) are compared with the alloy. The results show that the alloy possesses better mechanical properties and tribological behaviors than that of C95500 at elevated temperature. The tensile strength, elongation and hardness at 500℃ are 470MPa, 2.5% and HB220, respectively. The wear rate of the developed alloy at ambient and elevated temperature is about one-sixth and one-fortieth of that of C95500, respectively. The alloy is very suitable for ma-nufacturing heat-resisting and wear-resisting parts. Major strengthening mechanisms for the alloy are solution strengthening and the second phase strengthening.  相似文献   

14.
为了研究一种镍基单晶高温合金从室温到1100℃范围的拉伸变形与断裂行为,利用扫描电子显微镜和透射电子显微镜对拉伸断口及变形后位错组态进行观察和分析.结果表明:合金的屈服和抗拉强度均在约800℃时达到峰值,而塑性与强度的变化规律基本相反.室温和中温拉伸条件下,断口表现为解理断裂;而高温时则为微孔聚集型断裂.室温拉伸条件下,合金的主要变形方式为单根位错剪切γ′相;高温下为位错绕过γ′相;中温下则表现为由剪切到绕过的过渡.  相似文献   

15.
采用抛光或抛光-化学刻蚀对铝合金表面进行预处理,获得微纳米结构表面,再利用自制模具对铝合金与尼龙6(PA6)进行热压成型。用扫描电镜、激光共聚焦显微镜观察发现,硫酸刻蚀形成的微纳米结构表面有利于树脂在铝合金表面形成良好的机械互锁结构,实现PA6/铝合金优良的连接性能。力学性能测试显示,硫酸刻蚀后的PA6/铝合金连接试样拉伸剪切强度达到了19.1 MPa,界面粘结性能最优,比抛光后的连接试样提高了870%,其失效模式由界面失效变为内聚失效。  相似文献   

16.
The microstructures after casting and extruding, the mechanical properties and electrical conductivity after RRA treatment of conventional DC casting and low frequency electromagnetic casting (LFEC) 7075 aluminum alloy were investigated. The results showed that finer grains which distributed more homogeneously was obtained in LFEC ingots compared with those conventional DC ingots. The extruded bars of LFEC alloy kept its fine grain features of original as-cast structure. In the RRA treatment, with the extension of second aging time, the tensile strength and hardness of alloy decreased, but the electrical conductivity increased. Meanwhile, as the second aging temperature raised, the phase change rate in precipitation also increased. Under the same conditions, extruded bars of LFEC alloy had better performance than that of conventional DC cast alloy. The optimum RRA heat treatment process was 120 ℃/24 h+180 ℃/30 min+120 ℃/24 h. The LFEC extruded bars acquired tensile strength 676.64 MPa, hardness 198.18, and electrical conductivity 35.7% IACS respectively, which were higher than that in the T6 temper, indicating that a notable RRA response takes place in LFEC extruded bars, whose second-step retrogression time was 30 min, and it was suitable for mass production.  相似文献   

17.
A two-step quenching and partitioning(QP) treatment was applied to low-carbon alloy steels. The relation of initial martensite- retained austenite- fresh martensite and its effect on microstructure and mechanical properties were investigated by experiments. The results reveal that the volume fraction of retained austenite can reach the peak value of 17%, and the corresponding volume fractions of initial martensite and fresh martensite are 40% and 43%, respectively, when the tested steel is treated by initial quenching at 330°C, partitioning at 500°C for 60 s and final quenching to room temperature. Moreover, the micromorphologies of austenite and martensite become finer with the increasing of initial martensite fraction. The elongation is the highest when the volume fractions of initial martensite and retained austenite are 70% and 11%, respectively, meanwhile, the yield strength increases and tensile strength decreases gradually with the increase of initial martensite fraction, which proves that the mechanical properties including elongation, yield strength and tensile strength are based on the comprehensive effect of the retained austenite fraction, the finer microstructure and austenite stability.  相似文献   

18.
The effects of rare earth elements on the microstructure and properties of magnesium alloy AM60B alloy were studied.Different proportions of rare earth elements were added to AM60B and the tensile tests were carried out under different temperatures.The experimental results show that at room temperature the tensile strength of AM60B can be improved with the addition of rare earth elements.The ductility of which at room or elevated temperature(120℃) can also be improved ,and the ductility is to some extent in proportion with the amount of rare earth elements.The ductility at 120℃ is better than that at room temperture,The microstructure graphs demonstrate that appropriate amount of rare earth elements (0.1%-0.2%,mass fraction)can fine AM60B‘s grain and improve its ductility.  相似文献   

19.
Influence of aluminum addition on the structures and properties of SiO2-B2O3-Al2O3-CaO vitrified bond at low sintering temperature and high strength was discussed. FTIR and XRD analyses were used to characterize the structures of the basic vitrified bond with different contents of aluminum. The bending strength and the thermal expansion coefficients were also tested. Meanwhile, the microstructures of composite specimens at sintering temperature of 660 °C were observed by scanning electron microscope (SEM). The experimental results showed that the properties of vitrified bond with 1wt% aluminum were improved significantly, where the bending strength, Rockwell hardness, and thermal expansion coefficient of the vitrified bond reached 132 MPa, 63 HRB, and 6.73×10-6 °C-1, respectively.  相似文献   

20.
为了确定Cu、Zn、Mg等合金元素对重力铸造Al-5.5Fe基合金组织与力学性能的影响规律,采用了SEM、XRD、力学性能测试等分析检测手段.实验表明,适当增加Cu元素的质量分数可以有效提高Al-5.5Fe基合金的抗拉强度.对于重力铸造Al-5.5Fe-xCu合金而言,当Cu的质量分数由2.5%提高到4%时,该合金的抗拉强度得到明显提高,达到了130.65 MPa.Zn、Mg和Mn元素的添加可以有效提高Al-5.5Fe基合金的抗拉强度,Al-5.5Fe-4Cu-2Zn-0.4Mg-0.5Mn合金的抗拉强度达到了171.28 MPa.显微组织观察结果表明,向合金中加入Mg、Mn、Zn等元素可以将针片状Al3Fe的形貌改善得更加圆滑,合金中的第二相呈圆球状、N边形状以及六边形状,且弥散分布于基体中.第二相的数量会随着Cu元素的增加而增加,从而显著提高了合金的性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号