首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The deadenylation of maternal mRNAs in the Xenopus embryo is a sequence-specific process. One cis element that targets maternal mRNAs for deadenylation after fertilization is the embryo deadenylation element (EDEN). This element, composed of U/R repeats, is specifically bound by a protein, EDEN-BP. In the present study we show that the rate at which an RNA containing an EDEN is deadenylated can be increased by the presence of an additional cis element composed of three AUU repeats. This effect was observed for a natural EDEN (c-mos) and two synthetic EDENs. Hence, the enhancement of EDEN-dependent deadenylation conferred by the (AUU)3 motif is not due to an interaction with a particular EDEN sequence. Mutation of the (AUU)3 motif abrogated the enhancement of EDEN-dependent deadenylation. These data indicate that the rate at which a specific maternal mRNA is deadenylated in Xenopus embryos is probably defined by a cross talk between multiple cis elements.  相似文献   

2.
The metabolism of the poly(A) tail is a process important for the translational regulation of maternal mRNAs in Xenopus laevis oocytes and early embryos. Two poly(A) nuclease (PAN) activities have been described in Xenopus embryo or activated egg extracts (Legagneux et al (1995) RNA 1, 1001-1008). These activities (default PAN and EgPAN) are distinguishable by their deadenylation kinetics and their substrate specificities. In this report, we show that these activities display different sensitivities to biochemical treatments. Urea and, to a lesser extent, spermidine, inhibit EgPAN at concentrations which have no effect on default PAN. Heparin activates default PAN but inhibits EgPAN. When extracts are fractionated by ultracentrifugation, the default activity is recovered in one unique fraction, whereas two fractions must be combined to reconstitute the EgPAN activity. Moreover, these two deadenylation activities are separable by size exclusion chromatography under native conditions. We conclude that these two deadenylation activities are mediated by two protein complexes.  相似文献   

3.
We have developed an in vitro mRNA stability system using HeLa cell cytoplasmic S100 extracts and exogenous polyadenylated RNA substrates that reproduces regulated aspects of mRNA decay. The addition of cold poly(A) competitor RNA activated both a sequence-specific deadenylase activity in the extracts as well as a potent, ATP-dependent ribonucleolytic activity. The rates of both deadenylation and degradation were up-regulated by the presence of a variety of AU-rich elements in the body of substrate RNAs. Competition analyses demonstrated that trans-acting factors were required for RNA destabilization by AU-rich elements. The approximately 30-kD ELAV protein HuR specifically bound to RNAs containing an AU-rich element derived from the TNF-alpha mRNA in the in vitro system. Interaction of HuR with AU-rich elements, however, was not associated with RNA destabilization. Interestingly, recombinant ELAV proteins specifically stabilized deadenylated intermediates generated from the turnover of AU-rich element-containing substrate RNAs. These data suggest that mammalian ELAV proteins play a role in regulating mRNA stability by influencing the access of degradative enzymes to RNA substrates.  相似文献   

4.
Translational recruitment of maternal mRNAs is an essential process in early metazoan development. To identify genes required for this regulatory pathway, we have examined a collection of Drosophila female-sterile mutants for defects in translation of maternal mRNAs. This strategy has revealed that maternal-effect mutations in the cortex and grauzone genes impair translational activation and cytoplasmic polyadenylation of bicoid and Toll mRNAs. Cortex embryos contain a bicoid mRNA indistinguishable in amount, localization, and structure from that in wild-type embryos. However, the bicoid mRNA in cortex embryos contains a shorter than normal polyadenosine (poly(A)) tail. Injection of polyadenylated bicoid mRNA into cortex embryos allows translation demonstrating that insufficient polyadenylation prevents endogenous bicoid mRNA translation. In contrast nanos mRNA, which is activated by a poly(A)-independent mechanism, is translated in cortex embryos, indicating that the block in maternal mRNA activation is specific to a class of mRNAs. Cortex embryos are fertilized, but arrest at the onset of embryogenesis. Characterization of grauzone mutations indicates that the phenotype of these embryos is similar to cortex. These results identify a fundamental pathway that serves a vital role in the initiation of development.  相似文献   

5.
The translation of specific maternal mRNAs is regulated during early development. For some mRNAs, an increase in translational activity is correlated with cytoplasmic extension of their poly(A) tails; for others, translational inactivation is correlated with removal of their poly(A) tails. Recent results in several systems suggest that events at the 3' end of the mRNA can affect the state of the 5' cap structure, m7G(5')ppp(5')G. We focus here on the potential role of cap modifications on translation during early development and on the question of whether any such modifications are dependent on cytoplasmic poly(A) addition or removal. To do so, we injected synthetic RNAs into Xenopus oocytes and examined their cap structures and translational activities during meiotic maturation. We draw four main conclusions. First, the activity of a cytoplasmic guanine-7-methyltransferase increases during oocyte maturation and stimulates translation of an injected mRNA bearing a nonmethylated GpppG cap. The importance of the cap for translation in oocytes is corroborated by the sensitivity of protein synthesis to cap analogs and by the inefficient translation of mRNAs bearing nonphysiologically capped 5' termini. Second, deadenylation during oocyte maturation does not cause decapping, in contrast to deadenylation-triggered decapping in Saccharomyces cerevisiae. Third, the poly(A) tail and the N-7 methyl group of the cap stimulate translation synergistically during oocyte maturation. Fourth, cap ribose methylation of certain mRNAs is very inefficient and is not required for their translational recruitment by poly(A). These results demonstrate that polyadenylation can cause translational recruitment independent of ribose methylation. We propose that polyadenylation enhances translation through at least two mechanisms that are distinguished by their dependence on ribose modification.  相似文献   

6.
7.
1. Fluorescein isothiocyanate-conjugated concanavalin A (F-conA) and soy bean agglutinin (F-SBA) bind to the surface of EDTA-dissociated cells from blastula and gastrula stage Xenopus laevis and X. mulleri embryos. 2. Binding of these lectins is abolished by appropriate haptens (alpha-methyl-D-mannopyranoside for F-conA and 2-acetamido-2-deoxy-D-galactose for F-sba). 3. Gastrula stage cells show a clustering or capping of lectin binding sites not shown by blastula stage cells. 4. At least for F-conA, this capping is induced by the lectin. 5. There are no striking regional differences in either amount or pattern of lectin binding in early gastrulae of both species.  相似文献   

8.
Synthesis and turnover of polysomal mRNAs in sea urchin embryos   总被引:1,自引:0,他引:1  
The synthesis and turnover kinetics of polysomal mRNA have been measured in sea urchin embryos. Polysomes were isolated from stages ranging between mesenchyme blastula and late gastrula Strongylocentrotus purpuratus embryos which had been exposed to exogenous 3H-guanosine. The amount of radioactivity incorporated into messenger and ribosomal RNAs was determined separately as a function of time, and the precursor pool specific activity was measured in the same embryos. Synthesis and decay rate constants were extracted from the data by a least-squares procedure. Per embryo, the rate of mRNA synthesis was calculated to be about 0.13 pg min-1, while the rate of rRNA synthesis is about 0.022 pg min-1. The newly synthesized mRNA turns over with a half-time of 5.7 hr. The data support only a single decay rate for the mRNA, but small fractions of mRNA decaying at different rates cannot be excluded. Previous studies have shown that a minor fraction of the mRNA includes the least abundant, most highly diverse set of messages ("complex class" mRNAs). To determine whether mRNAs of the complex class are synthesized and degraded at similar rates, labeled mRNA was measured in hybrids formed in mRNA excess reactions with single copy DNA. These experiments showed that complex class mRNAs represent an approximately proportional amount of the new mRNA symthesis, and turn over at the same average rate as does the bulk of the mRNA. Most of the mRNAs in the embryo polysomes are newly synthesized, rather than maternal. This statement refers both to complex class mRNAs and to prevalent mRNAs. Considering the sequence homology between embryo and oocyte mRNAs shown earlier, these results indicate that many of the same structural genes active during oogenesis are being transcribed in embryos at these stages.  相似文献   

9.
10.
11.
Using microsurgical technique, we have conducted relaxation of circular tensions on the surface of X. laevis embryo at the stage of late blastula. Results of these operations were examined by optical and scanning electron microscopy, heteroplastic marking, and morphometry. The most important outcomes of tension relaxation included disappearance of blastocoel, intermixing of cells of the animal part of the embryo and their local migration from the embryo surface. This was followed by the appearance of slit-like depressions and protuberances, some of the protuberances showed branching. Morphological abnormalities of several types were observed 1.5-2 days later. Some of the abnormal embryos resembled the embryos of lower chordates. We have noted sharp increase in the variation of absolute volumes and mutual volume ratios of axial rudiments. Incubation of the operated animals in a hypotonic solution restored the blastocoel and led to significant normalization of development. The results obtained demonstrate that at the stage of late blastula mechanical tensions play an important role in the maintenance of normal morphological and differentiational structure of amphibian embryos.  相似文献   

12.
The earliest stages of development in most animals are under the control of maternally inherited information. The initiation of embryonic gene expression has been reported at the mid-blastula in amphibians and the mid-2-cell stage to the early morula in mammals. In chick embryos, embryonic gene expression was detectable at stage X (morula) and showed marked activation at stage XIII (blastula) with a gradual increase thereafter. Synthesis of rRNA and tRNA was low at stage X and was already the major class of RNA at stage XIII in chick embryos. The observed upregulation of RNA synthesis seems to coincide with a period of extensive fine structural differentiation when the first major cellular migrations start and signal the formation of the primitive streak in the chick embryo.  相似文献   

13.
14.
Polyadenylation at the 3' terminus has long been considered a specific feature of mRNA and a few other unstable RNA species. Here we show that stable RNAs in Escherichia coli can be polyadenylated as well. RNA molecules with poly(A) tails are the major products that accumulate for essentially all stable RNA precursors when RNA maturation is slowed because of the absence of processing exoribonucleases; poly(A) tails vary from one to seven residues in length. The polyadenylation process depends on the presence of poly(A) polymerase I. A stochastic competition between the exoribonucleases and poly(A) polymerase is proposed to explain the accumulation of polyadenylated RNAs. These data indicate that polyadenylation is not unique to mRNA, and its widespread occurrence suggests that it serves a more general function in RNA metabolism.  相似文献   

15.
16.
Translation of most eukaryotic mRNAs and many viral RNAs is enhanced by their poly(A) tails. Hepatitis C virus (HCV) contains a positive-stranded RNA genome which does not have a poly(A) tail but has a stretch of 98 nucleotides (X region) at the 3'-untranslated region (UTR), which assumes a highly conserved stem-loop structure. This X region binds a polypyrimidine tract-binding protein (PTB), which also binds to the internal ribosome entry site (IRES) in HCV 5'-UTR. These RNA-protein interactions may regulate its translation. We generated a set of HCV RNAs differing only in their 3'-UTRs and compared their translation efficiencies. HCV RNA containing the X region was translated three- to fivefold more than the corresponding RNAs without this region. Mutations that abolished PTB binding in the X region reduced, but did not completely abolish, enhancement in translation. The X region also enhanced translation from another unrelated IRES (from encephalomyocarditis virus RNA), but did not affect the 5'-end-dependent translation of globin mRNA in either monocistronic or bicistronic RNAs. It did not appear to affect RNA stability. The free X region added in trans, however, did not enhance translation, indicating that the translational enhancement by the X region occurs only in cis. These results demonstrate that the highly conserved 3' end of HCV RNA provides a novel mechanism for enhancement of HCV translation and may offer a target for antiviral agents.  相似文献   

17.
Xenopus laevis oocytes have been used to determine the intracellular localization of components of Ro ribonucleoprotein particles (Ro RNPs) and to study the assembly of these RNA-protein complexes. Microinjection of the protein components of human Ro RNPs, i.e., La, Ro60, and Ro52, in X. laevis oocytes showed that all three proteins are able to enter the nucleus, albeit with different efficiencies. In contrast, the RNA components of human Ro RNPs (the Y RNAs) accumulate in the X. laevis cytoplasm upon injection. Localization studies performed at low temperatures indicated that both nuclear import of Ro RNP proteins and nuclear export of Y RNAs are mediated by active transport mechanisms. Immunoprecipitation experiments using monospecific anti-La and anti-Ro60 antibodies showed that the X. laevis La and Ro60 homologues were cross-reactive with the respective antibodies and that both X. laevis proteins were able to interact with human Y1 RNA. Further analyses indicated that: (a) association of X. laevis La and Ro60 with Y RNAs most likely takes place in the nucleus; (b) once formed, Ro RNPs are rapidly exported out of the nucleus; and (c) the association with La is lost during or shortly after nuclear export.  相似文献   

18.
19.
Cytoplasmic polyadenylation controls the translation of several maternal mRNAs during Xenopus oocyte maturation and requires two sequences in the 3' untranslated region (UTR), the U-rich cytoplasmic polyadenylation element (CPE), and the hexanucleotide AAUAAA. c-mos mRNA is polyadenylated and translated soon after the induction of maturation, and this protein kinase is necessary for a kinase cascade culminating in cdc2 kinase (MPF) activation. Other mRNAs are polyadenylated later, around the time of cdc2 kinase activation. To determine whether there is a hierarchy in the cytoplasmic polyadenylation of maternal mRNAs, we ablated c-mos mRNA with an antisense oligonucleotide. This prevented histone B4 and cyclin A1 and B1 mRNA polyadenylation, indicating that the polyadenylation of these mRNAs is Mos dependent. To investigate a possible role of cdc2 kinase in this process, cyclin B was injected into oocytes lacking c-mos mRNA. cdc2 kinase was activated, but mitogen-activated protein kinase was not. However, polyadenylation of cyclin B1 and histone B4 mRNA was still observed. This demonstrates that cdc2 kinase can induce cytoplasmic polyadenylation in the absence of Mos. Our data further indicate that although phosphorylation of the CPE binding protein may be involved in the induction of Mos-dependent polyadenylation, it is not required for Mos-independent polyadenylation. We characterized the elements conferring Mos dependence (Mos response elements) in the histone B4 and cyclin B1 mRNAs by mutational analysis. For histone B4 mRNA, the Mos response elements were in the coding region or 5' UTR. For cyclin B1 mRNA, the main Mos response element was a CPE that overlaps with the AAUAAA hexanucleotide. This indicates that the position of the CPE can have a profound influence on the timing of cytoplasmic polyadenylation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号