首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An orthogonal subspace projection (OSP) method using linear mixture modeling was recently explored in hyperspectral image classification and has shown promise in signature detection, discrimination, and classification. In this paper, the OSP is revisited and extended by three unconstrained least squares subspace projection approaches, called signature space OSP, target signature space OSP, and oblique subspace projection, where the abundances of spectral signatures are not known a priori but need to be estimated, a situation to which the OSP cannot be directly applied. The proposed three subspace projection methods can be used not only to estimate signature abundance, but also to classify a target signature at subpixel scale so as to achieve subpixel detection. As a result, they can be viewed as a posteriori OSP as opposed to OSP, which can be thought of as a priori OSP. In order to evaluate these three approaches, their associated least squares estimation errors are cast as a signal detection problem ill the framework of the Neyman-Pearson detection theory so that the effectiveness of their generated classifiers can be measured by receiver operating characteristics (ROC) analysis. All results are demonstrated by computer simulations and Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data  相似文献   

2.
One of the primary goals of imaging spectrometry in Earth remote sensing applications is to determine identities and abundances of surface materials. In a recent study, an orthogonal subspace projection (OSP) was proposed for image classification. However, it was developed for an a priori linear spectral mixture model which did not take advantage of a posteriori knowledge of observations. In this paper, an a posterior least squares orthogonal subspace projection (LSOSP) derived from OSP is presented on the basis of an a posteriori model so that the abundances of signatures can be estimated through observations rather than assumed to be known as in the a priori model. In order to evaluate the OSP and LSOSP approaches, a Neyman-Pearson detection theory is developed where a receiver operating characteristic (ROC) curve is used for performance analysis. In particular, a locally optimal Neyman-Pearson's detector is also designed for the case where the global abundance is very small with energy close to zero a case to which both LSOSP and OSP cannot be applied. It is shown through computer simulations that the presented LSOSP approach significantly improves the performance of OSP  相似文献   

3.
在目前的高光谱图像异常目标检测算法中,通常 只考虑高光谱图像的光谱特性而忽 略其空间 特性,针对这一问题,提出了基于联合核协同的稀疏差异指数的检测算法。本文算法将核协 同与稀疏差异指数表示方法相结合,分别提出了光谱核协同和空间核协同的 稀疏差异 指数表示模型,进而提出了一种联合核协同的稀疏差异指数表示模型。在模拟的 高光谱图 像数据中,讨论了双窗口设计对所提出算法的检测结果的影响;在真实的AVIRIS高光谱图像 仿真实 验中,分析了不同波段选择及主成分分析对检测结果的影响。结果表 明,所提出的算法检测精度高,虚警概 率低。  相似文献   

4.
综合利用高光谱图像的光谱信息和空间信息,提出了一种新的混合噪声评估方法.首先通过滤波算法进行图像中均匀图像块的自动选取;然后利用多元线性回归模型,将均匀图像块内像素点的信号值和噪声值进行分离,并实现了图像中加性、乘性噪声的粗评估;最后根据噪声模型构建似然函数,利用最大似然估计法求解噪声模型参数.通过仿真图像和真实高光谱图像进行实验,验证了该方法的准确性和鲁棒性.  相似文献   

5.
Orthogonal subspace projection (OSP) has been successfully applied in hyperspectral image processing. In order for the OSP to be effective, the number of bands must be no less than that of signatures to be classified. This ensures that there are sufficient dimensions to accommodate orthogonal projections resulting from the individual signatures. Such inherent constraint is not an issue for hyperspectral images since they generally have hundreds of bands, which is more than the number of signatures resident within images. However, this may not be true for multispectral images where the number of signatures to be classified is greater than the number of bands such as three-band pour l'observation de la terra (SPOT) images. This paper presents a generalization of the OSP called generalized OSP (GOSP) that relaxes this constraint in such a manner that the OSP can be extended to multispectral image processing in an unsupervised fashion. The idea of the GOSP is to create a new set of additional bands that are generated nonlinearly from original multispectral bands prior to the OSP classification. It is then followed by an unsupervised OSP classifier called automatic target detection and classification algorithm (ATDCA). The effectiveness of the proposed GOSP is evaluated by SPOT and Landsat TM images. The experimental results show that the GOSP significantly improves the classification performance of the OSP.  相似文献   

6.
杨桄  田张男  李豪  关世豪 《激光技术》2020,44(2):143-147
高光谱图像的空间分辨率普遍较低,导致混合像元大量存在,为目标检测带来了一定困难。为了实现复杂背景下的高光谱图像目标检测,提出了一种去端元的目标检测方法。在光谱解混技术的基础上,建立了复杂背景下的光谱混合模型并加以改进,采用多次去端元的方法,取得了简化背景之后的高光谱图像。结果表明,与传统的RX目标检测算法相比,所提出的算法能够显著提升目标检测效果。在实际的军事运用中,为大尺幅图像的目标识别和揭露伪装提供了思路。  相似文献   

7.
A hyperspectral imaging sensor can reveal and uncover targets with very narrow diagnostic wavelengths. However, it comes at a price that it can also extract many unknown signal sources such as background and natural signatures as well as unwanted man-made objects, which cannot be identified visually or a priori. These unknown signal sources can be referred to as interferers, which generally play a more dominant role than noise in hyperspectral image analysis. Separating such interferers from signals and annihilating them subsequently prior to detection may be a more realistic approach. In many applications, the signals of interest can be further divided into desired signals for which we want to extract and undesired signals for which we want to eliminate to enhance signal detectability. This paper presents a signal-decomposed and interference-annihilated (SDIA) approach in applications of hyperspectral target detection. It treats interferers and undesired signals as separate signal sources that can be eliminated prior to target detection. In doing so, a signal-decomposed interference/noise (SDIN) model is suggested in this paper. With the proposed SDIN model, the orthogonal subspace projection-based model and the signal/background/noise model can be included as its special cases. As shown in the experiments, the SDIN model-based SDIA approach generally can improve the performance of the commonly used generalized-likelihood ratio test and constrained energy minimization approach on target detection and classification.  相似文献   

8.
We present a new approach to face relighting by jointly estimating the pose, reflectance functions, and lighting from as few as one image of a face. Upon such estimation, we can synthesize the face image under any prescribed new lighting condition. In contrast to commonly used face shape models or shape-dependent models, we neither recover nor assume the 3-D face shape during the estimation process. Instead, we train a pose- and pixel-dependent subspace model of the reflectance function using a face database that contains samples of pose and illumination for a large number of individuals (e.g., the CMU PIE database and the Yale database). Using this subspace model, we can estimate the pose, the reflectance functions, and the lighting condition of any given face image. Our approach lends itself to practical applications thanks to many desirable properties, including the preservation of the non-Lambertian skin reflectance properties and facial hair, as well as reproduction of various shadows on the face. Extensive experiments show that, compared to recent representative face relighting techniques, our method successfully produces better results, in terms of subjective and objective quality, without reconstructing a 3-D shape.  相似文献   

9.
Signal subspace approach for narrowband noise reduction in speech   总被引:2,自引:0,他引:2  
A signal subspace method is proposed for speech enhancement in the presence of narrowband noise. A fundamental assumption in subspace methods for noise reduction is that the noise covariance matrix is positive definite. However, this is not always the case, especially when the noise has narrowband characteristics. Based on the eigenvalue decomposition of the rank deficient noise covariance matrix, it is shown how to formulate the enhancement algorithm by decomposing the vector space of noisy signal into a signal-plus-noise subspace and a noise-free subspace. The proposed subspace partition is different from the conventional subspace approaches in that the noise reduction algorithm is implemented using the whitening approach exclusively in the signal-plus-noise subspace. The enhancement is performed by estimating the clean speech from the signal-plus-noise subspace and adding the components in the noise-free subspace. An explicit form of the estimator is presented, and examples are illustrated to validate the effectiveness of the proposed method.  相似文献   

10.
The key of the subspace-based Direction Of Arrival (DOA) estimation lies in the estimation of signal subspace with high quality. In the case of uncorrelated signals while the signals are temporally correlated, a novel approach for the estimation of DOA in unknown correlated noise fields is proposed in this paper. The approach is based on the biorthogonality between a matrix and its Moore-Penrose pseudo inverse, and made no assumption on the spatial covariance matrix of the noise. The approach exploits the structural information of a set of spatio-temporal correlation matrices, and it can give a robust and precise estimation of signal subspace, so a precise estimation of DOA is obtained. Its performances are confirmed by computer simulation results.  相似文献   

11.
Several of the more important endmember-finding algorithms for hyperspectral data are discussed and some of their shortcomings highlighted. A new algorithm - iterated constrained endmembers (ICE) - which attempts to address these shortcomings is introduced. An example of its use is given. There is also a discussion of the advantages and disadvantages of normalizing spectra before the application of ICE or other endmember-finding algorithms.  相似文献   

12.
13.
Synchronous code-division multiple-access (CDMA) techniques possess intrinsic protection against co-channel interference due to orthogonal codes employed and thus, offers higher capacity than existing frequency-division multiple-access (FDMA) or time-division multiple-access (TDMA) systems. In the presence of multipath, however, each signal is subject to frequency-selective fading and the orthogonality condition does not necessarily hold leading to increased cross correlation. In these scenarios, multiuser detection need to be performed to suppress interference and recover the message symbols. To implement such a technique, explicit knowledge of the (nonorthogonal) signature waveforms of all users is required. We propose a blind estimation scheme that provides closed-form estimates of the signature waveforms by exploiting the structure information of the data output. In particular, we show that the subspace of the data matrix contains sufficient information for unique determination of the signature waveforms. Based on this observation, a multiple signal classification (MUSIC)-like algorithm is derived. Performance analysis of the new approach is also presented  相似文献   

14.
噪声背景下雷达低速小目标检测的一种新方法   总被引:2,自引:0,他引:2  
该文在研究Duffing振子特性之后,基于Duffing振子与小波变换和神经网络相结合,提出了一种适用于低速小目标的Duffing振子雷达检测新方法。仿真实验表明,该检测方法能在低信噪比环境中,以低虚警率对低速目标进行有效检测。  相似文献   

15.
王嘉业  李艺璇  张玉珍 《红外与激光工程》2022,51(2):20220006-1-20220006-10
基于条纹投影的三维形貌测量广泛应用于工业制造、质量检测、生物医疗、航空航天等领域。然而在高速测量的场景下,由于光栅图像的采集过程曝光时间短,三维重建结果通常会受到较为严重的图像噪声干扰。近年来,深度学习技术在计算机视觉等领域得到了广泛应用,并且取得了巨大的成功。受此启发,提出了一种基于学习的光栅图像噪声抑制方法。首先构建了一个基于U-net的卷积神经网络。其次在训练过程中,构建的神经网络学习从含有噪声的条纹图像到对应高质量包裹相位之间的映射关系。当经过适当训练,该网络可从含有噪声的条纹图像中准确恢复相位信息。实验结果表明:针对离线的快速运动场景三维测量,该方法仅利用一幅光栅图像可恢复高精度的相位信息,且相位精度优于传统的三步相移方法。该方法可为提升运动高速场景三维测量的精度提供切实可靠的解决方案。  相似文献   

16.
In this paper, we introduce a novel two-stage denoising method for the removal of random-valued impulse noise (RVIN) in images. The first stage of our algorithm applies an impulse-noise detection routine that is a refinement of the HEIND algorithm and is very accurate in identifying the location of the noisy pixels. The second stage is an image inpainting routine that is designed to restore the missing information at those pixels that have been identified during the first stage. One of the novelties of our approach is that our inpainting routine takes advantage of the shearlet representation to efficiently recover the geometry of the original image. This method is particularly effective to eliminate jagged edges and other visual artifacts that frequently affect many RVIN denoising algorithms, especially at higher noise levels. We present extensive numerical demonstrations to show that our approach is very effective to remove random-valued impulse noise without any significant loss of fine-scale detail. Our algorithm compares very favourably against state-of-the-art methods in terms of both visual quality and quantitative measurements.  相似文献   

17.
A robust past algorithm for subspace tracking in impulsive noise   总被引:2,自引:0,他引:2  
The PAST algorithm is an effective and low complexity method for adaptive subspace tracking. However, due to the use of the recursive least squares (RLS) algorithm in estimating the conventional correlation matrix, like other RLS algorithms, it is very sensitive to impulsive noise and the performance can be degraded substantially. To overcome this problem, a new robust correlation matrix estimate, based on robust statistics concept, is proposed in this paper. It is derived from the maximum-likelihood (ML) estimate of a multivariate Gaussian process in contaminated Gaussian noise (CG) similar to the M-estimates in robust statistics. This new estimator is incorporated into the PAST algorithm for robust subspace tracking in impulsive noise. Furthermore, a new restoring mechanism is proposed to combat the hostile effect of long burst of impulses, which sporadically occur in communications systems. The convergence of this new algorithm is analyzed by extending a previous ordinary differential equation (ODE)-based method for PAST. Both theoretical and simulation results show that the proposed algorithm offers improved robustness against impulsive noise over the PAST algorithm. The performance of the new algorithm in nominal Gaussian noise is very close to that of the PAST algorithm.  相似文献   

18.
The authors describe a model-based method for the automatic extraction of linear features, like roads and paths, from aerial images. The paper combines and extends two earlier approaches for road detection in SAR satellite images and presents the modifications needed for the application domain of airborne image analysis together with representative results  相似文献   

19.
For the high resolution radar (HRR), the problem of detecting the extended target is considered in this paper. Based on a single observation, a new two-step detection based on sparse representation (TSDSR) method is proposed to detect the extended target in the presence of Gaussian noise with unknown covariance. In the new method, the Sinc dictionary is introduced to sparsely represent the high resolution range profile (HRRP). Meanwhile, adaptive subspace pursuit (ASP) is presented to recover the HRRP embedded in the Gaussian noise and estimate the noise covariance matrix. Based on the Sinc dictionary and the estimated noise covariance matrix, one step subspace detector (OSSD) for the first-order Gaussian (FOG) model without secondary data is adopted to realise the extended target detection. Finally, the proposed TSDSR method is applied to raw HRR data. Experimental results demonstrate that HRRPs of different targets can be sparsely represented very well with the Sinc dictionary. Moreover, the new method can estimate the noise power with tiny errors and have a good detection performance.  相似文献   

20.
We address the problem of suppression of a digital narrow-band interferer in direct-sequence spread spectrum (DSSS) communications. We focus on the adaptive suppression method proposed by Honig, Madhow and Verdti (see IEEE Trans. Inform. Theory, vol.41, p.944-960, 1995) for wide-band interference, applying it to a narrow-band interferer. We identify the eigenspaces of the system dynamics to analyze the convergence of the adaptive version of the minimum mean square error (MMSE) algorithm for this application. Using this subspace approach we are able to: (1) significantly decrease the convergence times via a new constraint on the step size in adaptation; (2) introduce a simple parameterization of the mean output energy (MOE) and signal-to-interference ratio (SIR) to compare performance of various receivers; and (3) identify modes of operation where the algorithm will cease to effectively cancel interference. We propose a new adaptive receiver that avoids the convergence anomalies identified, while capitalizing on the new step size for faster convergence. Simulation results to support theoretical results are presented  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号