首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of heavy metal contamination on soil enzyme activity and earthworm health (bioaccumulation and condition) were studied in contaminated soils collected from an formerly open burning and open detonation (OBOD) site. Soil extraction methods were also evaluated using CaCl2 and DTPA solutions as surrogate measures of metal bioavailability and ecotoxicity. Total heavy metal content of the soils ranged from 0.45 to 9.68 mg Cd kg−1, 8.96 to 5103 mg Cu kg−1, 40.21 to 328 mg Pb kg−1, and 56.61 to 10,890 mg Zn kg−1. Elevated metal concentrations are assumed to be primarily responsible for the reduction in enzyme activities and earthworm health indices. We found significant negative relationships between CaCl2- and DTPA-extractable metal content (Cd, Cu, and Zn) and soil enzyme activity (P < 0.01). Therefore, it could be concluded that soil enzyme activity and metal bioaccumulation by earthworms can be used as an ecological indicator of metal availability. Furthermore, CaCl2 and DTPA extraction methods are proved as promising, precise, and inexpensive surrogate measures of Cd, Cu, Pb, and Zn bioavailability from heavy metal-contaminated soils.  相似文献   

2.
A highly sensitive micelle-mediated extraction methodology for the preconcentration and determination of trace levels of cadmium by molecular fluorescence has been developed. Metal was complexed with o-phenanthroline (o-phen) and eosin (eo) at pH 7.6 in buffer Tris medium and quantitatively extracted into a small volume of surfactant-rich phase of PONPE 7.5 after centrifugating. The chemical variables affecting cloud point extraction (CPE) were evaluated and optimized. The RSD for six replicates of cadmium determinations at 0.84 μg L−1 level was 1.17%. The linearity range using the preconcentration system was between 2.79 × 10−3 μg L−1 and 2.81 μg L−1 with a correlation coefficient of 0.99. Under the optimal conditions, it obtained a LOD of 8.38 × 10−4 μg L−1 and LOQ of 2.79 × 10−3 μg L−1. The method presented good sensitivity and selectivity and was applied to the determination of trace amounts of cadmium in commercially bottled mineral water, tap water and water well samples with satisfactory results. The proposed method is an innovative application of CPE-luminescence to metal analysis comparable in sensitivity and accuracy with atomic spectroscopies.  相似文献   

3.
An isolated bacterial strain is placed in the branch of the Bacillus genus on the basis of 16S rRNA sequence and biochemical characteristics. It decolorized an individual and mixture of dyes, including reactive, disperse and direct. Bacillus sp. ADR showed 88% decolorization of sulfonated azo dye C.I. Reactive Orange 16 (100 mg L−1) with 2.62 mg of dye decolorized g−1 dry cells h−1 as specific decolorization rate along with 50% reduction in COD under static condition. The optimum pH and temperature for the decolorization was 7–8 and 30–40 °C, respectively. It was found to tolerate the sulfonated azo dye concentration up to 1.0 g L−1. Significant induction in the activity of an extracellular phenol oxidase and NADH–DCIP reductase enzymes during decolorization of C.I. Reactive Orange 16 suggest their involvement in the decolorization. The metal salt (CaCl2), stabilizers (3,4-dimethoxy benzyl alcohol and o-tolidine) and electron donors (sodium acetate, sodium formate, sodium succinate, sodium citrate and sodium pyruvate) enhanced the C.I. Reactive Orange 16 decolorization rate of Bacillus sp. ADR. The 6-nitroso naphthol and dihydroperoxy benzene were final products obtained after decolorization of C.I. Reactive Orange 16 as characterized using FTIR and GC–MS.  相似文献   

4.
The present study describes the presence of toxic cyanobacteria and microcystin (MCYST) concentrations in groundwater wells and tissues of vegetable plants irrigated with well waters in Asir region, southwest of Saudi Arabia. The results revealed the presence of cyanobacteria in all groundwater wells with a dominance of Oscillatoria limentica. This species was found to produce MCYSTs at a concentration of 336 μg g−1 as determined by enzyme-linked immunosorbent assay (ELISA). HPLC chromatogram for the methanolic extract of this species showed one main peak corresponding to MCYST-YR. MCYSTs were also detected in well waters at concentrations (0.3–1.8 μg L−1), exceeding the WHO guideline level (1 μg L−1) in some wells. All vegetable plants collected during the present study were found to accumulate MCYSTs in their leaves and roots at concentrations ranged from 0.07 to 1.2 μg g−1 fresh weight. The study suggests that ground waters and vegetable plants should be continuously monitored for the presence of MCYSTs to protect the public against the exposure to such potent hepatotoxins.  相似文献   

5.
The most important challenge to use phytoremediation is how to improve its efficiency by increasing the accumulation of metals in plants, or by improving key plant biological traits that should enhance metal uptake. In this paper, we used open-top chambers to investigate the effects of elevated CO2 (860 μL L−1) on biomass and Cs uptake by a Sorghum vulgare × Sorghum vulgare var. sudanense hybrid and Trifolium pratense L. growing on soils spiked with various levels of cesium (0, 300, 1500 and 3000 mg Cs kg−1). The results showed that elevated CO2 not only increased aboveground biomass of the Sorghum and Trifolium species by 32–111%, and by 8–11%, respectively, compared to the ambient CO2 treatment, but also caused more accumulation of Cs by Sorghum species (up to 73%) than Trifolium species (up to 43%). It was speculated that the increase in biomass and the improvement in Cs accumulation ability at elevated CO2 could be related to lowered soil pH values, and changes in number and kind of microorganisms in the rhizospheres of the two tested species. This is the first report of a link among elevated CO2, increased biomass and hyperaccumulation of Cs by Sorghum and Trifolium species.  相似文献   

6.
Chelate-assisted phytoextraction by high biomass producing plant species enhances the removal of heavy metals from polluted environments. In this regard, Juncus effusus a wetland plant has great potential. This study evaluated the effects of elevated levels of manganese (Mn) on the vegetative growth, Mn uptake and antioxidant enzymes in J. effusus. We also studied the role of citric acid and EDTA on improving metal accumulation, plant growth and Mn toxicity stress alleviation. Three-week-old plantlets of J. effusus were subjected to various treatments in the hydroponics as: Mn (50, 100 and 500 μM) alone, Mn (500 μM) + citric acid (5 mM), and Mn (500 μM) + EDTA (5 mM). After 2 weeks of treatment, higher Mn concentrations significantly reduced the plant biomass and height. Both citric acid and EDTA restored the plant height as it was reduced at the highest Mn level. Only the citric acid (but not EDTA) was able to recover the plant biomass weight, which was also obvious from the microscopic visualization of mesophyll cells. There was a concentration dependent increase in Mn uptake in J. effusus plants, and relatively more deposition in roots compared to aerial parts. Although both EDTA and citric acid caused significant increase in Mn accumulation; however, the Mn translocation was enhanced markedly by EDTA. Elevated levels of Mn augmented the oxidative stress, which was evident from changes in the activities of antioxidative enzymes in plant shoots. Raised levels of lipid peroxidation and variable changes in the activities of antioxidant enzymes were recorded under Mn stress. Electron microscopic images revealed several modifications in the plants at cellular and sub-cellular level due to the oxidative damage induced by Mn. Changes in cell shape and size, chloroplast swelling, increased number of plastoglobuli and disruption of thylakoid were noticed. However, these plants showed a high degree of tolerance against Mn toxicity stress, and it removed substantial amounts of Mn from the media. The EDTA best enhanced the Mn uptake and translocation, while citric acid best recovered the plant growth.  相似文献   

7.
Biosurfactant can make hydrocarbon complexes more mobile with the potential use in oil recovery, pumping of crude oil and in bioremediation of crude oil contaminant. In the investigation, bacterial isolates capable of utilizing poly-cyclic aromatic hydrocarbons like phenanthrene, pyrene and fluorene were used. A gradual decrease of the supplemented hydrocarbons in the culture medium was observed with corresponding increase in bacterial biomass and protein. The medium having the combined application of fluorine and phenanthrene caused better biosurfactant production (0.45 g l−1) and (0.38 g l−1) by Pseudomonas aeruginosa strains MTCC7815 and MTCC7814. The biosurfactant from MTCC7815 (41.0 μg ml−1) and MTCC7812 (26 μg ml−1) exhibited higher solubilization of pyrene; whereas, MTCC8165 caused higher solubilization of phenanthrene; and that of MTCC7812 (24.45 μg ml−1) and MTCC8163 (24.49 μg ml−1) caused more solubilzation of fluorene. Higher solubilization of pyrene and fluorene by the biosurfactant of MTCC7815 and MTCC7812, respectively enhanced their metabolism causing sustained growth. Biosurfactants were found to be lipopeptide and protein–starch–lipid complex in nature and they could reduce the surface tension of pure water (72 mN m−1) to 35 mN m−1. The critical micelle concentration (CMC) was also lower than the chemical surfactant sodium dodecyl sulphate (SDS). They differed in quantity and structure. The predominant rhamnolipids present in biosurfactants were Rha–C8–C10 and Rha–C10–C8.  相似文献   

8.
In this paper the mechanical properties of magnesium potassium phosphate cements used for the Stabilization/Solidification (S/S) of galvanic wastes were investigated. Surrogate wastes (metal nitrate dissolutions) were employed containing Cd, Cr(III), Cu, Ni, Pb or Zn at a concentration of 25 g dm−3 and different water-to-solid (W/S) ratios (0.3, 0.4, 0.5 and 0.6 dm3 kg−1) have been employed. Cements were prepared by mixing hard burned magnesia of about 70% purity with potassium dihydrogen phosphate. Compressive strength and tensile strength of specimens were determined. In addition the volume of permeable voids was measured. It was found that when comparing pastes that the volume of permeable voids increases and mechanical strength decreases with the increase of water-to-solid ratio (W/S). Nevertheless pastes with the same material proportions containing different metals show different mechanical strength values. The hydration products were analyzed by XRD. With the increase of water content not previously reported hydration compound was detected: bobierrite.  相似文献   

9.
The effect of operational conditions and initial dye concentration on the reductive transformation (decolorization) of the textile dye Reactive Blue 4 (RB4) using zero-valent iron (ZVI) filings was evaluated in batch assays. The decolorization rate increased with decreasing pH and increasing temperature, mixing intensity, and addition of salt (100 g L−1 NaCl) and base (3 g L−1 Na2CO3 and 1 g L−1 NaOH), conditions typical of textile reactive dyebaths. ZVI RB4 decolorization kinetics at a single initial dye concentration were evaluated using a pseudo first-order model. Under dyebath conditions and at an initial RB4 concentration of 1000 mg L−1, the pseudo first-order rate constant (kobs) was 0.029 ± 0.006 h−1, corresponding to a half-life of 24.2 h and a ZVI surface area-normalized rate constant (kSA) of 2.9 × 10−4 L m−2 h−1. However, as the initial dye concentration increased, the kobs decreased, suggesting saturation of ZVI surface reactive sites. Non-linear regression of initial decolorization rate values as a function of initial dye concentration, based on a reactive sites saturation model, resulted in a maximum decolorization rate (Vm) of 720 ± 88 mg L−1 h−1 and a half-saturation constant (K) of 1299 ± 273 mg L−1. Decolorization of RB4 via a reductive transformation, which was essentially irreversible (2–5% re-oxidation), is believed to be the dominant decolorization mechanism. However, some degree of RB4 irreversible sorption cannot be completely discounted. The results of this study show that ZVI treatment is a promising technology for the decolorization of commercial, anthraquinone-bearing, spent reactive dyebaths.  相似文献   

10.
In this work, determination of cadmium(II) using square wave voltammetry (SWV) was described. The method is based on accumulation of these metal ions on kaolin platinum electrode (K/Pt). The K/Pt performance was optimized with respect to the surface modification and operating conditions. The optimized conditions were obtained in pH of 5.0 and accumulation time of 25 min. Under the optimal conditions, the relationship between the peak current versus concentration was linear over the range of 9 × 10−8 to 8.3 × 10−6 mol L−1. The detection limit (DL, 3σ) was 5.4 × 10−9 mol L−1. The analytical methodology was successfully applied to monitor the Cd(II) content in natural water. Interferences were also evaluated.  相似文献   

11.
Airborne particulate matter (PM2.5 and PM10) concentrations were measured in Zonguldak, Turkey from January to December 2007, using dichotomous Partisol 2025 sampler. Collected particulate matter was analyzed for 14 selected polycyclic aromatic hydrocarbons (PAHs) by high-performance liquid chromatography with fluorescence detection (HPLC-FL). The seasonal variations of PM2.5 and PM10 concentrations were investigated together with their relationships with meteorological parameters. The maximum daily concentrations of PM2.5 and PM10 reached 83.3 μg m−3 and 116.7 μg m−3 in winter, whereas in summer, they reached 32.4 μg m−3 and 66.7 μg m−3, respectively. Total concentration of PM10-associated PAHs reached 492.4 ng m−3 in winter and 26.0 ng m−3 in summer times. The multiple regression analysis was performed to predict total PM2.5- and PM10-associated PAHs and benzo(a)pyrene-equivalent (BaPE) concentrations with respect to meteorological parameters and particulate mass concentrations with the determination coefficients (R2) of 0.811, 0.805 and 0.778, respectively. The measured mean values of concentrations of total PM2.5- and PM10-associated PAHs were found to be 88.4 ng m−3 and 93.7 ng m−3 while their predicted mean values were found to be 92.5 ng m−3 and 98.2 ng m−3, respectively. In addition, observed and predicted mean concentration values of PM2.5-BaPE were found to be 14.1 ng m−3 and 14.6 ng m−3. The close annual mean concentrations of measured and predicted total particulate related PAHs imply that the models can be reliably used for future predictions of particulate related PAHs in urban atmospheres especially where fossil fuels are mainly used for heating.  相似文献   

12.
Copper removal from acid mine drainage originating from closed copper mine “Cerovo” RTB Bor, Serbia and containing approximately 1.3 g dm−3 of copper and a very small amount of Fe2+/Fe3+ ions, has been successfully performed by the direct electrowinning method using either a porous copper sheet or carbon felt as the cathode. A cell with a fluidised bed of inert turbulent promoters, also used in this study, may be considered as unacceptable for the purpose view, having a cell voltage between 12 and 14 V.The cells used in the electrowinning experiments were compared in terms of cell voltage, pH and copper concentration. The results showed that it is possible to remove copper successfully from the mine waters with a high degree of electrowinning—higher than 92% and with a satisfactorily average current efficiency (>60%). Depending on the process time and the applied current, a final copper concentration less than 0.1 g dm−3 was achieved. The specific energy consumption was approximately 7 kWh kg−1 of deposited copper. A dense copper deposit was obtained when a three-dimensional electrode was used.  相似文献   

13.
The new type of ion chelating resin (IDA-PUF) has iminodiacetic group that was prepared from polyurethane foam (PUF) by the reaction between primary amine of PUF and monochloro-acetic acid. The IDA-PUF was characterized using infrared spectra, elemental and thermal analysis. The exchange properties and chromatographic behaviour of the new chelating resin were investigated for removal of some alkali metal ions (lithium, sodium and potassium) using batch and column processes. The maximum distribution coefficient (KD) of trace alkali metal ions was in the pH range of 8–10. The kinetics of sorption of the alkali metal ions was found to be fast with average values of half-life of sorption (t1/2) of 4.93 min. The values of ΔG, ΔS and ΔH were −3.86 kJ mol−1, 57.73 J mol−1 K−1 and 14.41 kJ mol−1, respectively, which reflects the spontaneous and endothermic nature of ion exchanger process. The average sorption capacity of IDA-PUF is 4.8 mmol/g for alkali metal ions, enrichment factors ≈40 and the recovery 95–100% were also achieved with average value of RSD% = 1.67. The proposed method has been successfully applied to preconcentrate, determinate and remove the alkali metal ions from different samples of water.  相似文献   

14.
Novel, sensitive and rapid spectrophotometric methods, using phenoxazine (PNZ), 2-chlorophe-noxazine (CPN) and 2-trifluoromethylphenoxazine (TPN) as chromogenic reagents for the determination of residual chlorine are proposed. The methods are based on the reduction of chlorine by an electrophilic coupling reagent, 3-methyl-2-benzothiazoline hydrazono hydrochloride hydrate (MBTH) in mild hydrochloric acid medium and subsequent coupling with PNZ, CPN or TPN. The blue color formed in the reaction showed maximum absorbance at 680–690 nm and obeyed Beer's law over the range 0.1–2.2 μg ml−1. The molar absorptivity values with PNZ, CPN and TPN were 2.80 × 104, 2.67 × 104 and 1.91 × 104 l mol−1 cm−1 and Sandell's sensitivity values were 0.028, 0.027 and 0.028 μg cm−2 respectively. The proposed methods were successfully applied in the determination of residual chlorine in drinking water and environmental water samples. The performance of proposed methods was evaluated in terms of Student's t-test and variance ratio F-test which indicated the significance of proposed methods over the standard spectrophotometric method.  相似文献   

15.
A hydroponics experiment was conducted to examine the phytofiltration of Cd by Limnocharis flava (L.) Buchenau grown in low-level Cd-contaminated water. For this, 45 d old seedlings of L .flava were transferred to a floating-support culture system containing nutrient solution spiked with four levels of Cd (0.5, 1, 2 and 4 mg l−1) and were separately harvested after 3, 7, 21 and 30 d. After 30 d harvesting, the percentage removal of Cd from the above four treatments reached up to 98, 96, 95 and 93%, respectively. Interestingly, all treatments had higher growth rate than control at 95% confidence level and plants still remained healthy at 4 mg l−1 Cd exposure. The bioaccumulation study showed a linear relationship of Cd (R2 = 0.896–0.999) in all plant parts with the exposure time (3–30 d) and Cd concentrations in hydroponics system (0.5–4 mg l−1). Although, the root of L. flava had higher Cd concentration than leaf and peduncles, the total Cd concentrations in aerial plant parts were higher than the roots. The maximum bioconcentration factor (BCF) and translocation factor (TF) value of L. flava were calculated as 984.42 and 1.43, respectively. Estimated Cd accumulation capacity of L. flava per unit area (m2) was found to be in the range of 218. 35–1698.92 mg m−2.The experimental results demonstrated that L. flava is a suitable candidate for the phytofiltartion (>93%) of Cd from low-level Cd-contaminated water.  相似文献   

16.
This study was carried out to investigate the adsorption equilibrium and kinetics of a pesticide of the uracil group on powdered activated carbon (PAC). The experiments were conducted at a wide range of initial pesticide concentrations (5 μg L−1 to 500 μg L−1 at pH 7.8), corresponding to equilibrium concentrations of less than 0.1 μg L−1 for the weakest, which is compatible with the tolerance limits of drinking water. Such a very broad range of initial solute concentrations resulting powdered activated carbon (PAC) concentrations (0.1–5 mg L−1) is the main particularity of our study. The application of several monosolute equilibrium models (two, three or more parameters) has generally shown that Bromacil adsorption is probably effective on two types of sites. High reactivity sites (KL  103 L mg−1) which are 10–20 less present in a carbon surface than lower reactivity sites (KL  10 L mg−1), according to the qm values calculated by two- or three-parameter models. The maximum capacity of the studied powdered activated carbon (PAC), corresponding to monolayer adsorption, compared to the Bromacil molecule surface, would be between 170 mg g−1 and 190 mg g−1. This theoretical value is very close to the experimental qm values obtained when using linearized forms of Langmuir, Tóth and Fritz–Schluender models.  相似文献   

17.
This study describes biosorption of chromium (VI) by immobilized Spirulina platensis, in calcium alginate beads. Three aspects viz. optimization of bead parameters, equilibrium conditions and packed column operation were studied and subsequently modeled. Under optimized bead diameter (2.6 mm), calcium alginate concentration (2%, w/v) and biomass loading (2.6%, w/v) maximum biosorption was achieved. 140 g l−1 loading of optimized beads resulted in 99% adsorption of chromium (VI) ions from an aqueous solution containing 100 mg l−1 of chromium (VI). The quantitative chromium (VI) uptake was effectively described by Freundlich adsorption isotherm. The immobilized S. platensis beads were further used in a packed bed column wherein the effects of bed height, feed flow rate, inlet chromium (VI) ion concentration were studied by assessing breakthrough time. The performance data were tested for various models fitting in order to predict scale up-design parameters such as breakthrough time and column height. Results were encouraging.  相似文献   

18.
In this study, the phytic acid conversion coating, a new environmentally friendly chemical protective coating for magnesium alloys, was prepared. The influences of phytic acid concentration on the formation process, microstructure, chemical state and corrosion resistance of the conversion coatings on AZ91D magnesium alloy were investigated by means of weight gain measurement, field-emission scanning electron microscopy (FESEM), Fourier transform infrared (FTIR) spectroscopy, potentiodynamic polarization method and electrochemical impedance spectroscopy (EIS), respectively. And the depth profile of all elements in the optimal conversion coatings was analyzed by auger electron spectroscopy (AES).The results show that the growth, microstructure, chemical state and corrosion resistance of the conversion coatings are all obviously affected by the phytic acid concentration. The concentration of 5 g l−1 corresponds to the maximum weight gain. The main elements of the coating are Mg, Al, O, P, and C, which are distributed gradually in depth. The functional groups of conversion coatings formed in higher concentration phytic acid solution are closer to the constituent of phytic acid than those formed in lower concentration phytic acid solution. The coatings formed in 1–5 g l−1 are integrated and uniform. However, those formed in 20–50 g l−1 have some micro-cracks on the α phase. The coating formed in 5 g l−1 has the best corrosion resistance, whose open circuit current density decreases about six orders than that of the untreated sample, although the coatings deposited in 1–20 g l−1 can all improve the corrosion resistance of AZ91D.  相似文献   

19.
This study investigated the inhibition effect of iron, cadmium and sulfide on the substrate utilization rate of sulfate reducing granular sludge. A series of batch experiments in a UASB reactor were conducted with different concentrations of iron (Fe2+, 4.0–8.5 mM), cadmium (Cd2+, 0.53–3.0 mM) and sulfide (4.2–10.6 mM), the reactor was fed with ethanol at 1 g chemical oxygen demand (COD)/L and sulfate to yield a COD/SO42− (g/g) ratio of 0.5. The addition of iron, up to a concentration of 8.1 mM, had a positive effect on the substrate utilization rate which increased 40% compared to the rate obtained without metal addition (0.25 g COD/g VSS-d). Nonetheless, iron concentration of 8.5 mM inhibited the specific substrate utilization rate by 57% compared to the substrate utilization rate obtained in the batch amended with 4.0 mM Fe2+ (0.44 g COD/g VSS-d). Cadmium had a negative effect on the specific substrate utilization rate at the concentrations tested; at 3.0 mM Cd2+ the substrate utilization rate was inhibited by 44% compared with the substrate utilization rate without metal addition. Cadmium precipitation with sulfide did not decrease the inhibition of cadmium on sulfate reduction. These results could have important practical implications mainly when considering the application of the sulfate reducing process to treat effluents with high concentrations of sulfate and dissolved metals such as iron and cadmium.  相似文献   

20.
The contamination of subsurface soils with petroleum hydrocarbons is a widespread environmental problem. The objective of this study was to evaluate the potential of applying waste basic oxygen furnace slag (BOF slag) as the catalyst to enhance the Fenton-like oxidation to remediate fuel oil or diesel contaminated soils. The studied controlling factors that affect the removal efficiency of petroleum hydrocarbons included concentrations of H2O2, BOF slag dosages, types of petroleum hydrocarbons (e.g., fuel oil and diesel), and types of iron mineral. Experimental results indicate that oxidation of petroleum hydrocarbon via the Fenton-like process can be enhanced with the addition of BOF slag. Results from the X-ray powder diffraction analysis reveal that the major iron type of BOF slag/sandy loam system was iron mineral (e.g., α-Fe2O3 and α-FeOOH). Approximately 76% and 96% of fuel oil and diesel removal were observed (initial total petroleum hydrocarbon (TPH) concentration = 10,000 mg kg−1), respectively, with the addition of 15% of H2O2 and 100 g kg−1 of BOF slag after 40 h of reaction. Because BOF slag contains extractable irons such as amorphous iron and soluble iron, it can act as an iron sink to supply iron continuously for Fenton-like oxidation. Results demonstrate that Fenton-like oxidation catalyzed by BOF slag is a potential method to be able to remediate petroleum-hydrocarbon contaminated soils efficiently and effectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号