首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以Gd_2O_3、Sm_2O_3和CeO_2为原材料,采用固相反应法制备了(Sm_(1-x)Gd_x)_2Ce_2O_7固溶体。对其相结构、显微组织和热物理性能进行了研究。结果表明,成功制备了具有单一萤石结构的(Sm_(1-x)Gd_x)_2Ce_2O_7固溶体;该系列固溶体显微组织致密,晶界清晰,其热导率随Gd~(3+)掺杂量先降低后增大,热膨胀系数均随着Gd~(3+)掺杂量的增加而降低。该系列固溶体有潜力用作新型热障涂层表面陶瓷层材料。  相似文献   

2.
以Gd_2O_3、MgO和Ce(NO_3).6H_2O为原料,采用溶胶凝胶法制备了(Gd_(1-x)Mg_x)_2Ce_2O_(7-x/2)固溶体。用X射线衍射法分析了固溶体的相组成,用扫描电镜观察了其致密块体样品的显微组织,用激光脉冲法测试了固溶体的热扩散系数。结果表明,成功制备了纯净的具有萤石结构的(Gd_(1-x)Mg_x)_2Ce_2O_(7-x/2)固溶体,其致密块体结构致密,晶界清晰,较多的氧空位使(Gd_(0.95)Mg_(0.05))_2Ce_2O_(6.95)具有最低的热导率,(Gd_(1-x)Mg_x)_2Ce_2O_(7-x/2)固溶体有潜力用作热障涂层表面陶瓷层材料。  相似文献   

3.
以La_2O_3、Sm_2O_3和CeO_2为原料,采用高温固相反应法制备了(Sm_(1-x)La_x)_2Ce_2O_7(0x1)系列固溶体。并对其相结构、显微组织、元素组成、热物理性能进行了研究。X射线衍射分析表明,所合成的(Sm_(1-x)La_x)_2Ce_2O_7(0x1)系列固溶体具有典型的单一缺陷萤石型结构。扫描电镜分析表明,其显微组织十分致密,相对致密度92%,且各元素摩尔比与其化学式比较接近。其热导率随着La_2O_3掺杂量的增加而降低,并明显低于Y_2O_3部分稳定ZrO_2的热导率。其在1 000℃时的热膨胀系数处于11.83×10~(-6)/K至12.86×10~(-6)/K之间,明显高于YSZ的9×10~(-6)/K。该系列固溶体良好的热物理性能,表明其有潜力用作新型热障涂层表面陶瓷层材料。  相似文献   

4.
采用固相合成法制备了Sm_(2-x)Y_xZr_2O_7陶瓷材料,分别对材料的物相组成、显微结构、热导率及热膨胀性能进行表征。结果表明,Sm_(2-x)Y_xZr_2O_7陶瓷材料(x≤0.8)的晶体结构为立方烧绿石结构,晶粒尺寸为1~3μm,室温~1 200℃范围内,陶瓷材料的热膨胀系数11.0×10~(-6)K~(-1),随着x值的增大,热扩散系数逐渐降低,热导率低至1.50 W/(m·K),显示出良好的热物理性能。  相似文献   

5.
将纳米ZrO_2-8wt%Y_2O_3和纳米ZrO_2-8wt%Y_2O_3中掺杂25wt%纳米CeO_2(CeO_2/ZrO_2-8wt%Y_2O_3)的两种粉末进行团聚处理,用等离子喷涂方法在GH30高温合金表面分别制备了两种材料热障涂层.用扫描电镜、透射电镜和X射线衍射仪对掺杂了25wt%纳米CeO_2的团聚体粉末和涂层的微观组织结构进行分析研究,测试比较了两种涂层在900、1100和1300℃时的热震性能,并试验了两种涂层在1050℃、保温100h后的抗氧化能力.结果表明,纳米粉末经团聚处理后为多孔的球形结构,掺杂纳米CeO_2涂层组成相为稳定的t相(t-ZrO_2、t-Zr_(0.82)Y_(0.18)O_(1.91)、t-Zr_(0.82)Ce_(0.18)O_2)和c相(c-CeO_2),并保持纳米组织结构,平均晶粒尺寸为45nm,其抗热震性能和氧化性能要高于纳米ZrO_2-8wt%Y_2O_3涂层.  相似文献   

6.
改变用等离子喷涂-物理气相沉积(PS-PVD)工艺制备热障涂层时等离子工作气体中H2组分的流量,制备出不同的ZrO_2-7%Y_2O_3(7YSZ)热障涂层并研究了H_2对PS-PVD热障涂层的影响。结果表明:等离子工作气体中的H_2对PS-PVD热障涂层的表面形貌、微观结构、孔隙率、硬度和抗冲蚀性能等性质有显著的影响。H_2流量分别为0、5、10 SLPM时制备的PS-PVD热障涂层,其孔隙率分别为16.7%、20.4%、7.7%;显微硬度分别为224.2 HV0.025、236.6 HV0.025、394.4 HV0.025;固体颗粒冲蚀25 s后的失重量分别为78.5 mg、65.0 mg、17.3 mg。随着H_2组分流量的增大热障涂层的孔隙率先增加后减小,柱状结构逐渐变化,硬度和抗冲蚀性能提高。  相似文献   

7.
《材料科学技术学报》2019,35(11):2647-2651
Fine grains and slow grain growth rate are beneficial to preventing the thermal stress-induced cracking and thermal conductivity increase of thermal barrier coatings.Inspired by the sluggish diffusion effect of high-entropy materials,a novel high-entropy(HE) rare-earth zirconate solid solution(La_(0.2)Ce_(0.2)Nd_(0.2)Sm_(0.2)Eu_(0.2))2 Zr_2 O_7 was designed and successfully synthesized in this work.The as-synthesized(La_(0.2)Ce_(0.2)Nd_(0.2)Sm_(0.2)Eu_(0.2))_2 Zr_2 O_7 is phase-pure with homogeneous rare-earth element distribution.The thermal conductivity of as-synthesized(La_(0.2)Ce_(0.2)Nd_(0.2)Sm_(0.2)Eu_(0.2))_2 Zr_2 O_7 at room temperature is as low as 0.76 W m-1 K-1.Moreover,after being heated at 1500 ℃ for 1-18 h,the average grain size of(La_(0.2)Ce_(0.2)Nd_(0.2)Sm_(0.2)Eu_(0.2))_2 Zr_2 O_7 only increases from 1.69 μm to 3.92 μm,while the average grain size of La_2Zr_2O_7 increases from 1.96 μm to 8.89 μm.Low thermal conductivity and sluggish grain growth rate indicate that high-entropy(La_(0.2)Ce_(0.2)Nd_(0.2)Sm_(0.2)Eu_(0.2))_2Zr_2O_7 is suitable for application as a thermal barrier coating material and it may possess good thermal stress-induced cracking resistance.  相似文献   

8.
采用超音速火焰(HVOF)喷涂技术在Q235钢基体上制备了CoCrAlYTa-10%Al_2O_3涂层,利用光学显微镜(OM)、扫描电子显微镜(SEM)、能谱仪(EDS)、X射线衍射仪(XRD)、显微硬度计等研究了涂层的微观组织形貌、物相组成以及显微硬度。结果表明:涂层组织致密且分布均匀,孔隙率为0.44%;涂层主要由浅灰色钴基固溶体、深灰色铬基固溶体、白色球状富钽固溶体以及黑色Al_2O_3组成,其中Al_2O_3来自于喂料的原始组成和CoCrAlYTa合金中铝的氧化;涂层硬度为580630HV0.3,大约是Q235钢基体硬度(200HV0.3)的3倍,涂层具有良好的力学性能。  相似文献   

9.
以硝酸铈、硝酸锆为无机源,十六烷基三甲基溴化铵(CTAB)为模板剂.采用水热法制备了介孔Ce_xZr_(1-x)O_2固溶体,考察了n(CTAB)/(n(Ce)+n(Zr))及铈锆物质的量比对其结构的影响.通过X射线衍射(XRD)、N_2吸附脱附、高分辨透射电镜(HRTEM)、FT-IR分析手段对其结构进行了表征.结果表明,n(CTAB)/(n(Ce)+n(Zr))对样品结构有很大影响,在优化条件下.合成的Ce_xZr_(1-x)O2固溶体具有与CeO_2相似的立方萤石结构;采用两步焙烧法去除模板剂后,HRTEM显示样品是由纳米粒子堆积而成,并具有孔道结构;介孔Ce_(0.5)Zr_(0.5)O_2的比表面积为175m~2/g,平均孔径和孔体积分别是5.9nm和0.257cm3/g;Ce~(0.75)Zr_(0.25)O_2的比表面积为110m~2/g,平均孔径和孔体积分别为9.4nm和0.261cm~3/g.  相似文献   

10.
以(Sm_(1-X)Gd_X)_2Zr_2O_7为研究对象,以微晶蜡作为载体,通过14.5 mm弹道枪膛壁温度测试试验,开展(Sm_(1-X)Gd_X)_2Zr_2O_7降膛壁温度效果研究。结果表明,在不装填(Sm_(1-X)Gd_X)_2Zr_2O_7试样的条件下,14.5 mm弹道枪坡膛内壁最高温度为957℃,在装填质量比为1∶2(微晶蜡:钐钆复合物锆酸盐)试样条件下,5发坡膛内壁最高温度的平均值为869℃,降温效果明显。通过半密闭爆发冲刷试验,开展(Sm_(1-X)Gd_X)_2Zr_2O_7用量及爆炸压力对沉积层的影响研究,包括分散性及化学组成。研究结果表明,在60 MPa和2 500 K条件下,随着(Sm_(1-X)Gd_X)_2Zr_2O_7用量的增加,沉积层变厚,沉积层中存在(Sm_(1-X)Gd_X)_2Zr_2O_7且分散良好;在(Sm_(1-X)Gd_X)_2Zr_2O_7试样质量比为1∶2及2 500 K条件下,随着爆炸压力的增加,沉积层变薄,沉积层中存在(Sm_(1-X)Gd_X)_2Zr_2O_7且分散良好。最终得出隔热机理为:在高温条件下,试样融化吸收部分热量,同时高压条件形成的气流携带(Sm_(1-X)Gd_X)_2Zr_2O_7高速冲刷枪管内壁,部分(Sm_(1-X)Gd_X)_2Zr_2O_7沉积到内壁,在界面结合处形成了一层均匀分布的沉积层,综合起到隔热保护作用。  相似文献   

11.
以 Y_2O_3-BaO-CuO 三元系制备的 YBa_2Cu_3O_(7-x)超导材料对水和水蒸汽很敏感。超导相 YBa_2Cu_3O_((?)-x)与水的作用随温度升高而迅速增强,通常的水解产物为 Ba(OH)_2、Y(OH)_3和 CuO。这种性质起因于晶体结构的不稳定性,因为在这类钙钛矿型的超点阵结构中存在很多氧空位。室温下,YBa_2Cu_3O_(7-x)相与水的作用较弱,而杂质相 Ba_4Y_2O_7和 BaCuO_7等可与水迅速产生反应并释放热量,从而导致 YBa_(?)Cu_3O_(7-x)脱氧、水解。  相似文献   

12.
原始粉末是影响等离子喷涂热障涂层组织结构和性能的主要因素之一。Y_2O_3稳定ZrO_2(Yttria stabilized zirconia,YSZ)空心球形粉末综合了熔融破碎粉末的预合金化效果好和团聚烧结粉末的流动性好的优点。采用该粉末制备的YSZ热障涂层的隔热性能、抗热震性能以及抗烧结性能等均显著提高,是目前综合性能最为优异的热障涂层之一。结合国内外研究情况,文章主要介绍了喷雾干燥法、等离子球化法以及模板法制备等离子喷涂用YSZ空心球形粉末的原理和优缺点;同时,对等离子喷涂过程中YSZ空心球形粉末熔滴的飞行特性、铺展凝固行为以及YSZ空心球形粉末制备涂层组织结构及性能的研究进行了概述;最后,指出了目前研究中存在的问题并对其未来的研究方向进行了展望。  相似文献   

13.
采用柠檬酸溶胶-凝胶法(Sol-Gel),以Ce(NO_3)_3·6H_2O、Gd_2O_3、柠檬酸为原料,制备纳米级Ce_xGd_(1-x)O_(2-δ)复合氧化物,对制得的样品进行X射线衍射、比表面、扫描电镜及能谱和透射电镜表征,研究样品的组成、晶粒大小、比表面积和样品形貌特征。结果表明,Ce_xGd_(1-x)O_(2-δ)复合氧化物在600℃和800℃焙烧后均形成均匀的面心立方CeO_2基固溶体和/或体心立方Gd_2O_3基固溶体。单组分Gd_2 O_3样品在800℃焙烧后形成具有体心立方的Gd_2O_3物相,经600℃焙烧后还同时含有43%(质量分数)的六方Gd_2O_2CO_3晶型。对于同一Gd~(3+)掺杂比例样品,焙烧温度越高,晶粒越大,比表面积越小;同一焙烧温度样品的晶粒尺寸随Gd~(3+)掺杂量增大先减小后增大,但均小于单组分CeO_2和Gd_2O_3,且Ce_(0.5)Gd_(0.5)O_(2-δ)样品晶粒最小。表明复合氧化物的形成提高了抗烧结能力,形成更多孔隙结构,使样品晶粒变小,比表面积变大,并且x=0.5为形成最小纳米级样品的最佳比例。  相似文献   

14.
采用低温燃烧-水热合成法制备出具有不同x值的Ce_(1-x)Pr_xO_2陶瓷颜料,研究了Pr掺杂量对Ce_(1-x)Pr_xO_2晶体结构的影响,并对Ce_(1-x)Pr_xO_2陶瓷颜料呈色机理进行了分析。结果表明:Pr离子进入CeO_2晶格形成Ce_(1-x)Pr_xO_2固溶体,Ce_(1-x)Pr_xO_2的晶格常数随着Pr掺杂量的增加而增大;Ce_(1-x)Pr_xO_2晶体中的氧空位破坏了CeO_2晶体中质点排列的有序性,引起晶体内周期性势场的畸变。自由电子陷落在氧离子空位中而形成缺陷,即形成氧离子空位的F-色心,导致其吸收波长<600nm左右的可见光,从而呈现红色色调。  相似文献   

15.
采用共沉淀法制备了一系列CuO/Ce_(1-x)Zr_xO_2催化剂,考察了催化剂中氧化铜的含量、载体中的铈锆比和焙烧温度对催化剂活性的影响。利用XRD对所制催化剂的晶相结构进行了表征;H2-TPR研究了催化剂的氧化还原能力;以NO的转化效率作为评价指标,进行了催化活性评价。测试结果表明450℃焙烧的催化剂活性较好,在同一铈锆固溶体上负载不同比例的CuO,对于x%CuO/Ce_(0.9)Zr_(0.1)O_2负载CuO量为11.5%、温度达到190℃时,NO转化率达到50%;300℃时NO转化率接近100%。不同铈锆比对催化剂活性具有一定的影响,对于11.5%CuO/Ce_(1-x)Zr_xO_2系列催化剂,当x=0.1时活性较好,完全转化温度比纯铈基载体降低了50℃。  相似文献   

16.
邬红龙  郭军  张旺  陈卓 《材料导报》2016,30(2):66-70
采用溶胶凝胶法制备一系列R_xCe_(0.8-x)Zr_(0.2)O_2(R=Mg,Ca,Sr和Ba,x=0,0.1,0.2和0.3)催化剂,并用X射线衍射(XRD)、比表面积(BET)、扫描电镜(SEM)、氢气程序升温还原(H_2-TPR)和程序升温氧化(TPO)等技术对催化剂进行表征,同时考察该系列催化剂催化碳烟燃烧活性。研究结果表明,Zr~(4+)均能进入CeO2晶格中形成具有立方萤石结构的固溶体。在不同的接触条件下,样品Ba_(0.1)Ce_(0.7)Zr_(0.2)O_2催化碳烟燃烧活性均最高。在一系列样品Ba_(0.1)Ce_(0.7)Zr_(0.2)O_2中,催化剂与碳烟紧密接触条件下其催化碳烟燃烧时更能够反映出催化剂内在活性的大小,而松散接触时则更易受到接触条件的影响。  相似文献   

17.
以硝酸铈和硝酸锆为原料,尿素为沉淀剂,CTAB为模板剂,采用均匀共沉淀法,制备出具有介孔结构的Ce_(1-x)Zr_xO_2(x=0.1~0.4)材料。利用XRD、Raman光谱、BET、SEM和TEM等测试方法,对合成试样的晶体结构、微观形貌、孔结构等性能进行表征。实验结果表明制备的Ce_(1-x)Zr_xO_2材料主晶相为立方面心CeO2结构。Ce_(1-x)Zr_xO_2材料随着Zr~(4+)掺量增大,晶胞参数a逐渐减小,且BET比表面积呈现出先增加后减小的趋势;Ce_(0.9)Zr_(0.1)O_2试样BET比表面积随反应溶液中CTAB浓度增加逐渐增大,随煅烧温度升高而减小。当Zr~(4+)摩尔掺量为10%,CTAB的浓度为0.055mol/L,煅烧温度为500℃时,制备的Ce_(0.9)Zr_(0.1)O_2试样为直径约200nm的球形颗粒,BET比表面积达到了94.82m~2/g。  相似文献   

18.
等离子喷涂纳米ZrO_2-8%Y_2O_3涂层的结构及性能   总被引:2,自引:0,他引:2  
热障涂层能提高工件的性能,延长其使用寿命,但目前对其厚度0.5 mm以上的研究报道不多.为此,以纳米ZrO2-8%(质量分数)Y2O3粉末(YSZ)为原料,用等离子体喷涂法制备了3种厚度(0.6,0.8,1.2 mm)的热障涂层,并对涂层的结构和性能进行了研究.结果表明:纳米涂层主要由未熔粉末及周围的柱状晶、等轴晶组成,可观察到大量纳米晶,喷涂电流对组织结构的影响远大于喷涂距离;热障涂层结合强度随涂层厚度的增加而降低;涂层隔热性能随涂层厚度的增加而提高,温度越高优势越明显.  相似文献   

19.
采用水热电泳沉积法在C/C-SiC复合材料表面制备了不同相组成的硅酸钇复合抗氧化外涂层.采用X射线衍射仪(XRD)和扫描电子显微镜(SEM)对涂层的相组成和显微结构进行了表征.研究了不同相组成对硅酸钇涂层的显微结构和抗氧化性能的影响.结果表明,Y_2SiO_5和Y_2Si_2O_7两相配比对涂层的显微结构和抗氧化性能有较大的影响.随着复合涂层中Y_2Si_2O_7含量的增加,复合硅酸钇外涂层的热膨胀系数逐渐接近于SiC内涂层的热膨胀系数.当组成达到m(Y_2SiO_5)/m(Y_2Si_2O_7)=3:7时,内外涂层的热膨胀系数最为接近,从而得到均匀、致密、无显微裂纹、抗氧化性能优异的复合硅酸钇涂层.该涂层在1773K静态空气中,经过氧化100h后,失重仅为1.2%;继续增加Y_2Si_2O_7含量,内外涂层的热膨胀系数差异逐渐增大,涂层再次出现裂纹,抗氧化性能随之下降.  相似文献   

20.
以Sm2O3,ZrO(NO3)2.2H2和Ce(NO3).6H2O为原料,采用溶胶凝胶法制备了Sm2( Zr0.9Ce0.1 )2O7陶瓷材料.用X射线衍射(XRD)和扫描电镜(SEM)技术研究了样品的相组成和微观组织,用激光脉冲法测试了样品的热扩散系数.结果表明,采用溶胶凝胶成功制备了具有单一的萤石结构的Sm2 (Zr0.9 Ce0.1)2O7纳米粉体,其颗粒大小均匀,但团聚较为严重,其平均热导率仅为YSZ陶瓷的70%,较低热导率表明该材料有潜力用作新型热障涂层用陶瓷材料.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号