共查询到19条相似文献,搜索用时 46 毫秒
1.
2.
3.
基于国内外现有变压器老化影响因素、绕组热点温度的预测方法及变压器绝缘状态评估的研究基础,以变压器顶层油温为研究对象,利用灰色关联分析法分析变压器监测量与顶层油温的相关性,采用Adam算法优化的人工神经网络对热点温度进行预测。该预测方法速度快、精度高,能在变压器负载状态和散热设备动态变化明显的工作情况下实现顶层油温的高精度预测。 相似文献
4.
5.
变压器是电力系统中不可或缺的重要设备,它的安全稳定运行对整个系统的运行至关重要.为了及时发现和排除变压器出现的故障,提出了基于改进BP神经网络的附加参数法、优化学习因子及隐含层节点数目等电力设备故障诊断方法,通过与传统的BP神经网络算法对比,可以发现收敛速度显著提升,局部最小值问题也得到了解决,仿真结果证明了改进方法的... 相似文献
6.
基于粗糙集与模糊神经网络的变压器故障诊断方法 总被引:11,自引:4,他引:7
将基于粗糙集理论的模糊神经网络,应用于变压器故障诊断中,充分利用粗糙集理论对知识的约简能力模糊神经网络优良的分类能力,首先利用粗糙集方法对原始数据进行约简,形成精简的规则集,以此基础构建的模糊神经网络结构完全是由粗糙集最终约简规则决定的,具有良好的拓扑结构,网络规模大大减少,学习速度大为提高,而且保持了网络较好的分类能力。 相似文献
7.
8.
10.
11.
模糊神经网络在变压器故障诊断中的应用 总被引:11,自引:8,他引:11
提出了与神经网络结合的模糊变压器故障诊断新方法 ,克服了一般模糊诊断学习困难的局限 ;通过与模糊判决矩阵的对应关系 ,发现神经网络系统的权值矩阵就是模糊诊断里面的判决矩阵。模糊神经网络、组合神经网络和判决树 3种方法对故障样本的正判率分别为 90 .4 %、75 .4 %、83.3% ,这表明模糊神经网络方法的有效性与可行性 ,它弥补了DGA试验相近故障识别率低的不足 ,克服了组合神经网络无“可塑性”的缺陷 ,避免了判决树对样本选择的强烈依赖 ,使故障诊断准确度大为提高 ;也说明了DGA和其它电气试验相结合综合分析的必要 相似文献
12.
13.
电力变压器是电网的核心设备之一。变压器故障一直是危及电网安全的主要因素。因此研究有效的故障诊断方法具有十分重大的现实意义。以BP网络为例。介绍了基于油中溶解气体分析的变压器神经网络故障诊断方法。试验结果表明。该方法是有效可行的,具有一定的实际应用价值。 相似文献
14.
15.
16.
17.
GA-BP混合算法在变压器色谱诊断法中的应用 总被引:29,自引:7,他引:22
将一种改进的遗传操作与人工神经网络相结合的混合算法应用于电力变压器的故障诊断,有效地解决了常规BP算法易陷入局部极小、收敛速度慢和基本遗传算法早熟等缺点。实例仿真结果表明,该算法具有较快的收敛速度和较高的计算精度,满足电力变压器故障诊断的要求。 相似文献
18.
19.
电力变压器的智能故障诊断研究 总被引:3,自引:0,他引:3
将基于改进遗传算法(IGA)和误差反向传播(BP)算法相结合构成的IGA-BP混合算法用于训练神经网络。该混合算法有效克服常规BP和传统GA算法独立训练神经网络的缺陷,并应用于电力变压器溶解气体分析的智能故障诊断。实验诊断结果表明,IGA-BP混合算法的收敛速度快于BP及GA算法,并且具有较高的诊断准确率。 相似文献