首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
季秋忆  于晓彩  张健  聂志伟  杨夯  易森 《材料导报》2017,31(Z1):368-373
通过共沉淀法自制上转换材料与TiO_2复合的纳米光催化剂;利用SEM、XRD等方法对光催化剂进行表征;通过改变催化剂掺杂比、pH值、催化剂投入量、光照时间和柴油初始浓度研究了可见光下光催化降解海水中柴油污染的影响因素以及复合光催化剂ZrO_2(Er3+)/TiO_2的利用效率,通过正交试验优化海水中柴油污染的降解;进行动力学分析,计算总反应速率表达式。结果表明,当柴油初始浓度为0.20g/L,催化剂投加量为0.8g/L,催化剂掺杂比为40%,pH为7,光照时间为2.5h时,复合光催化剂的利用效率最高,柴油的去除率达到87.74%。ZrO_2(Er3+)/TiO_2在可见光下能够有效地降解海水中的柴油污染。  相似文献   

2.
采用水热法制备Bi2WO6-NiFe2O4磁性可见光催化剂。利用X射线衍射(XRD)、紫外-可见漫反射光谱(DRS)、扫描电子显微镜(SEM)和磁学性质测量系统(MPMS)对所合成材料进行分析和表征。最后以罗丹明B(RhB)为目标污染物,考察不同pH值条件下,Bi2WO6-NiFe2O4复合可见光催化剂对污染物的降解效率。结果表明,罗丹明B溶液pH值为5时,Bi2WO6-NiFe2O4具有最大降解效率2 h达98%。Bi2WO6-NiFe2O4在外加磁场下能快速的从溶液中分离。  相似文献   

3.
以NH4Cl为氮源,采用溶胶-凝胶法制备N掺杂纳米TiO2,以4-氯苯酚和TOC降解率为指标,考察灼烧温度、搅拌速度、溶液pH值等因素对N掺杂TiO2可见光活性及动力学方程的影响.结果表明,N掺杂TiO2对4-氯苯酚具有良好的降解作用,在灼烧温度400℃、快速搅拌、pH值为4.6下,4-氯苯酚降解率最大,在可见光辐射6h时达到87%..降解反应符合Langmuir-Hinshelwood动力学方程.  相似文献   

4.
以NH4Cl为氮源,采用溶胶-凝胶法制备N掺杂纳米TiO2,以4-氯苯酚和TOC降解率为指标,考察灼烧温度、搅拌速度、溶液pH值等因素对N掺杂TiO2可见光活性及动力学方程的影响。结果表明,N掺杂TiO2对4-氯苯酚具有良好的降解作用,在灼烧温度400℃、快速搅拌、pH值为4.6下,4-氯苯酚降解率最大,在可见光辐射6h时达到87%。降解反应符合Langmuir—Hinshelwood动力学方程。  相似文献   

5.
利用酸催化的溶胶一凝胶法成功地合成了一系列不同CP3+掺杂量(x=0.01%~10%)的TiO2复合光催化剂(Cd3+/TiO2).在太阳光条件下,以亚甲基蓝溶液的光催化降解对复合材料的光催化性能进行了表征,并考察了催化剂投加量、Cr3+掺杂量和溶液pH值等因素对光催化降解反应的影响.结果表明,亚甲基蓝溶液在复合微粒上的光催化降解反应遵循Langmuir-Hinshelwood动力学模型,在催化剂投加量为lg/L、Cr3+掺入量为0.3%和pH=7时,Cr3+/TiO2复合微粒光催化活性达最佳,测得表观反应速率常数 K为7.27×10-3 rag(L·min)-1,t1/2为95min,反应4h后亚甲基蓝的降解率可达79%,与纯的TiO2相比较,反应速率提高了2倍,降解率提高了20%.中性或碱性条件下有利于亚甲基蓝溶液的光催化降解.  相似文献   

6.
pH值对氮掺杂TiO2物化性质和光催化活性的影响   总被引:2,自引:0,他引:2  
以TiCl4为前驱体,水合肼和氨水的混合溶液为氮源,采用共沉淀法制备了可见光响应型氮掺杂二氧化钛(N-TiO2)光催化剂,重点研究了制备过程中pH值对催化剂的微结构和光催化活性等物化性质的影响.采用XRD、BET、UV-vis和XPS等表征方法对光催化剂性质进行了表征.催化剂主要以锐钛矿相存在,具有介孔结构和较高的比表面积(~90m2/g).随着pH值增大,锐钛矿相(101)面衍射峰逐步增强,晶粒尺寸逐渐增大,比表面积逐渐减小.XPS结果表明催化剂掺杂的氮主要以系列氮氧化物形式存在.氮掺杂小幅降低了禁带宽度,感光范围拓展到可见光区.光催化降解实验表明,pH=3.5时,催化剂的可见光降解效率最高,为39.65%.随着pH值增大,催化剂可见光催化活性逐渐降低;而在紫外光照射下,pH=9.5时,催化活性最低;pH=5.5时,催化活性最高.  相似文献   

7.
以钛酸丁酯(Ti(OC_4H_9)_4)、硝酸铟(In(NO_3)_3)、聚乙烯吡咯烷酮(PVP-K30)为原料,采用静电纺丝技术制备钛酸铟(In_2TiO_5)纳米纤维;通过水热合成,使二氧化铈(CeO_2)均匀分布于In_2TiO_5纳米纤维表面,制备了CeO_2/In_2TiO_5可见光催化剂。利用XRD、SEM、UV-Vis DRS和TG-DTA等技术对样品进行了表征。以罗丹明(RhB)为目标降解物,考察了催化剂的可见光光催化性能,结果表明250W氙灯下,180min罗丹明的降解率为83.70%,降解过程服从一级动力学模型。  相似文献   

8.
以Bi(NO3)3·5H2O和Na2WO4·2H2O为原料,采用水热法制备Bi2WO6催化剂,在λ420nm的可见光区降解模拟罗丹明B(RhB)废水,研究前驱物pH值、水热反应温度和时间对Bi2WO6催化性能的影响;通过X射线衍射(XRD)、扫描电镜(SEM)、紫外-可见吸收光谱(UV-Vis)和比表面积(BET)表征,考察前驱物pH值对催化剂晶型、形貌、吸光性和比表面积的影响。结果表明,前驱物pH值为Bi2WO6光催化活性的关键影响因素,且对产物微观结构影响较大。当pH值=4.5时合成的产物光催化活性最佳,反应90 min RhB溶液降解率达到99.90%,经重复使用4次,其光催化效果无明显降低,表明该Bi2WO6是一种有效稳定的可见光催化剂。  相似文献   

9.
采用微波辅助共沉淀法制备了纳米CeO_2/ZnO光催化剂。采用X射线粉末衍射仪、透射电子显微镜、傅里叶变换红外光谱仪以及紫外-可见吸收光谱仪对催化剂样品进行结构表征。以罗丹明B(RhB)为目标降解物对催化剂样品进行光催化降解实验。结果表明:合成的纳米CeO_2/ZnO光催化剂由立方相的CeO_2及六方相ZnO组成,且CeO_2与ZnO较好地复合在一起;该催化剂在紫外区域吸收性能良好。光催化降解RhB实验表明,在质量浓度0.2g/L、pH=8条件下,催化剂光催化性能最佳。  相似文献   

10.
以Bi(NO_3)_3·5H_2O和Sr(NO_3)_2为原料,采用溶胶-凝胶法合成了Sr_6Bi_2O_9光催化剂。使用X射线衍射(XRD)、紫外-可见光漫反射(UV-Vis DRS)和傅里叶红外光谱(FT-IR)等对Sr_6Bi_2O_9催化剂的结构进行了表征。Sr_6Bi_2O_9样品的光催化性能是通过在可见光下(λ≥400nm)光催化降解直接耐酸大红(4BS)溶液来评估。实验结果表明,经过800℃焙烧处理的Sr_6Bi_2O_9光催化剂对模拟印染废水4BS显示出优异的降解性能,60min内对4BS的去除率高达98%。此外,研究了反应条件如有机物初始浓度、Sr_6Bi_2O_9投加量、溶液pH值对催化剂的光催化活性的影响。并进一步通过紫外-可见光谱分析结果验证了光催化剂对4BS的降解机理。  相似文献   

11.
以硝酸锌和硫酸亚铁为原料,采用水热法一步合成了ZnO/ZnFe_2O_4纳米颗粒,再通过水合肼还原氧化石墨烯合成了ZnO/ZnFe_2O_4/石墨烯磁性催化剂。采用X射线衍射(XRD),场发射扫描电子显微镜(FESEM),透射电子显微镜(TEM),傅立叶变换红外光谱仪(FT-IR)等仪器对催化剂的结构进行了表征。以亚甲基蓝作为目标降解物,考察了不同石墨烯掺量的磁性催化剂在可见光照射下的光催化性能。结果表明,当石墨烯掺量为3%时,磁性催化剂的活性最优,可见光照射60min后亚甲基蓝溶液的降解率高达98%。磁性催化剂稳定性良好,且由于ZnFe_2O_4的存在,磁性催化剂可通过外部磁场进行回收。  相似文献   

12.
张静静  孙杰  李吉刚  周添  陈立泉 《材料导报》2016,30(Z2):369-373
采用水热合成法、沉积沉淀法分别制备花球状CeO_2和负载型Au/CeO_2。考察了反应液pH、金的负载量和煅烧温度对Au/CeO_2催化氧化CO活性的影响,确定最佳制备参数,并对优化的Au/CeO_2进行稳定性、储存性和再生性测试。结果表明:反应液的最适宜pH为8.5~9,最适宜的负载量和焙烧温度分别是2%(质量分数)和300℃。优化的Au/CeO_2催化剂,室温下将1%CO催化氧化至1.8×10-6,连续反应67h活性开始下降,当温度升至55℃时,连续反应700h,CO浓度仍然保持在8×10-6以下。此外,该催化剂还表现出良好的储存性和再生性。  相似文献   

13.
以改进Hummers法制得的氧化石墨烯(GO)为原料,采用溶胶-凝胶法成功合成GO改性氧化锌(ZnO)/二氧化铈(CeO_2)(ZnO/CeO_2)复合纳米光催化剂,并对产物的结构、组成及其形貌进行了表征,并以刚果红(CR)为目标降解污染物,考察了不同配合比的产物在紫外光照射下的光催化性能。研究结果表明:在CeO_2与ZnO摩尔配合比为1∶50,GO用量为0.8g,GO改性ZnO/CeO_2复合纳米光催化剂的用量为1.0g/L,pH=10,反应120min条件下,GO改性ZnO/CeO_2复合纳米光催化剂对100mL(50mg/L)CR的降解率高达94.12%。与相同条件下ZnO/CeO_2复合纳米材料相比,GO改性ZnO/CeO_2复合纳米光催化剂的光催化性能得到了明显提高。  相似文献   

14.
采用固体超强酸SO42-/TiO2-Fe2O3为光催化剂,苯酚的光催化降解为模型反应,考察了pH值、苯酚初始浓度、催化剂投加量、光照距离、光照时间、助催化剂H2O2对光催化降解过程的影响。结果表明,苯酚初始浓度为50mg/L,催化剂投加量5g/L,光照距离11cm,光照时间为150min,降解率达61.29%,添加助催化剂H2O2后,反应60min,苯酚降解率达到85.12%。  相似文献   

15.
为了去除碱性水溶液中的染料,采用纳米二氧化锰负载钴锰(Co(Ⅱ)-Mn(Ⅱ)-MnO_2)催化K_2S_2O_8/NaHCO_3氧化降解染料。对Co(Ⅱ)-Mn(Ⅱ)-MnO_2催化剂进行形貌和结构表征。考察了溶液初始pH值、反应温度、催化剂投加量、甲基橙(MO)、过硫酸钾摩尔比及碳酸氢钠浓度等因素对Co(Ⅱ)-Mn(Ⅱ)-MnO_2催化氧化MO的影响,并对MO氧化过程结构变化进行分析。实验结果表明:在优化条件下Co(Ⅱ)-Mn(Ⅱ)-MnO_2催化MO(40mg/L)的降解率达到82.61%,MO降解反应动力学为一级反应。该体系适合处理中性和弱碱性MO废水。  相似文献   

16.
采用温和的水热法制备了多铁KBiFe_2O_5粉体。利用X射线衍射(XRD)和场发射扫描电子显微镜(FE-SEM)等手段对样品的纯度及形貌进行了表征。利用紫外-可见漫反射(UV-Vis DRS)测试了样品的光吸收性能。通过降解罗丹明B(Rh B)和甲基橙(MO)研究了染料溶液pH值对KBiFe_2O_5可见光催化性能的影响。结果显示,KBiFe_2O_5的可见光催化性能随着溶液pH值的下降而显著提升,这是由于溶液中的催化剂在酸性条件下具有更好的分散性,并且染料分子更容易吸附到催化剂表面,从而提高催化效率。  相似文献   

17.
以二甲基甲酰胺(DMF)为辅助剂,以硝酸银(AgNO3)、磷酸二氢钾(KH2PO4)和十六烷基三甲基溴化铵(CTAB)为原料,采用简单的液相沉淀法一步合成蘑菇状纳米溴化银/磷酸银(AgBr/Ag_3PO_4)可见光催化剂,并对样品进行了表征,以甲基橙(MO)溶液(pH=2)为目标降解物研究其光催化性能。研究结果表明:合成的蘑菇状纳米AgBr/Ag_3PO_4可见光催化剂,其禁带宽度为1.97eV,对MO溶液有较好的可见光催化活性;在可见光照4min,0.08g AgBr/Ag_3PO_4对酸性MO溶液(200mL,8mg/L)的降解率达到97.86%,循环降解3次后降解率为95.21%。  相似文献   

18.
采用水热法合成了纯单斜晶系的可见光催化剂BiVO4,考察了水热温度、水热时间和体系的pH值对BiVO4结构和光催化性能的影响。利用XRD、SEM、BET和UV-VIS对样品进行了表征,结果表明:获得的BiVO4具有中空棒状结构,升高水热温度、提高反应溶液的pH值、延长水热时间有利于单斜晶系BiVO4的生成。确定了BiVO4的最优合成条件为:水热温度140℃,水热时间6h,反应体系pH=9。选择亚甲基蓝溶液作为光催化降解物质,研究BiVO4的可见光催化性能和催化机理。结果表明,最优条件下制备的BiVO4具有较好的可见光催化性能;同时,增加降解体系的pH值提高了催化剂对亚甲基蓝的吸附能力和活化电子的利用效率,有利于提高BiVO4的光催化性能。  相似文献   

19.
采用电化学阳极氧化法在纯钛表面制备出TiO2纳米管阵列,应用FE-SEM和XRD表征其形貌。以该纳米管陈列薄膜为光阳极,比较了光解、光催化和光电催化对甲基橙溶液降解效率的差异,研究了pH值和外加偏压对甲基橙降解效率的影响,并建立了光电催化氧化反应的一级动力学模型来描述产生这种效果的主要因素。结果表明,在光电催化氧化体系中,TiO2纳米管阵列薄膜对甲基橙具有显著的降解作用;溶液中的电解质、溶液的pH值和外加偏压是影响光电催化效果的关键因素;最佳的降解条件为电解质存在下、pH值为3、外加偏压为1.5V,在该条件下紫外灯照射80min后降解率可达100%。  相似文献   

20.
为了验证氧化石墨烯的光催化能力,研究能增强其光催化效果的最佳条件,用改进的Hummer法制备了氧化石墨烯及分散液,通过扫描电镜、透射电镜、红外图谱、拉曼光谱以及荧光共聚焦光谱,对氧化石墨烯的微观形貌、成分、结构进行表征研究;在光照条件下降解亚甲基蓝验证其光催化能力,通过改变催化剂浓度、搅拌条件、曝气氧气浓度和外加电流,研究了四种条件对光催化能力的影响.在亚甲基蓝浓度为40 mg/L,氧化石墨烯浓度为20 mg/L,曝气量为2 L/min,氧气浓度为50%时,2 h可见光照射后亚甲基蓝降解率为62.9%,总去除率为89.9%;当不进行曝气处理,外加电流密度为1 m A/cm~2时,2 h可见光照射后亚甲基蓝降解率为53%,总去除率为87.9%.氧化石墨烯可以通过光催化产生羟基自由基降解污染物,通过改变条件来增加自由基含量可以提升催化效果.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号