首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Large-scale synthesis of silver nanowires via a solvothermal method   总被引:1,自引:0,他引:1  
Silver nanostructures have been synthesized through a simple solvothermal method by reducing silver nitrate (AgNO3) with ethylene glycol (EG) and using poly(vinylpyrrolidone) (PVP) as an adsorption agent. Different concentrations of ferric chloride (FeCl3) are added into the solution. It is found that AgCl colloids formed in the initial stage greatly influence the final morphologies of the products. When a low-concentration FeCl3 solution is used, there is a mixture of silver nanoparticles and nanowires. However, when a high-concentration FeCl3 solution (100 μM) is used, large amounts of AgCl colloids appear, resulting in decreasing free Ag+ during initial formation of silver seeds and slowly releasing of Ag+ to the solution in the subsequent reaction. This leads to the formation of silver nanowires. Furthermore, an increase in the concentration of FeCl3 from 100 to 300 μM results in the synthesis of silver nanowires with larger sizes. In addition, Fe(III) is reduced to Fe(II) form which in turn reacts with and removes adsorbed atomic oxygen from the surface of silver seeds. In this case, uniform silver nanowires can be obtained.  相似文献   

2.
Tadpole-shaped nanoplates, linearly arranged nanoparticles and triangular and hexagonal nanoplates were synthesized under a Langmuir monolayer of a cationic fluorocarbon surfactant, FC-4 (C3F7O(CF(CF3)CF2O)2CF(CF3)CONH(CH2)3N+(C2H5)2CH3I?) through interfacial reduction of AuCl4? by formaldehyde gas. Reports about such tadpole-shaped nanoparticles are relatively scarce. The predominantly plate-like particles are mainly nearly perfect triangular and hexagonal nanocrystals, of micrometer scale in diameter. The Au nanoparticles are characterized using transmission electron microscopy (TEM) and selected-area electron diffraction (SAED). The atomically flat planar surfaces of the Au nanoplates correspond to {111} planes and the lateral surfaces are {110} planes. The surface pressure strongly influences the formation of different Au nanostructures. A potential mechanism of such diverse morphologies is also discussed.  相似文献   

3.
Silver nanostructures have been synthesized by a simple solvothermal method in the presence of poly(vinylpyrrolidone) (PVP). Typically, different exotic agents (NaOH, KBr, NaCl) are added into the reaction system. The anions (OH, Cl, Br) from these agents can combine Ag+ to form silver salt colloids (AgOH, AgBr and AgCl), decreasing the concentration of free Ag+ in the initial formation of silver seeds. However, different release rates of Ag+ from these colloids to the solution in the subsequent reaction may play different roles in the growth of silver seeds. The as-prepared silver nanostructures were characterized by UV–vis absorption spectrum, X-ray diffraction (XRD) and field emission scanning electron microscope (FSEM). It is found that silver nanostructures with various shapes can be obtained by the addition of different exotic agents. Finally, our work provides a simple route to synthesize silver nanostructures with controllable morphologies.  相似文献   

4.
Formation of novel assembled silver nanostructures from polyglycol solution   总被引:1,自引:0,他引:1  
This paper described a simple and mild chemical reduction approach to prepare novel silver nanostructures with different morphologies. Dendritic silver nanostructure was obtained by a fast reduction reaction using hydrazine as a reducing agent in aqueous solution of polyglycol, while both the zigzag and linear Ag nanostructures were slowly assembled using polyglycol as a reducing agent. Powder X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution TEM (HRTEM) and field emission scanning electron microscopy (FE-SEM) were used to characterize the obtained silver nanostructures. Fourier transform infrared absorption (FT-IR) spectra were recorded to show that there exists a certain coordination of the oxygen atoms in the polyglycol with Ag+ ions in aqueous solution of the AgNO3/polyglycol. Furthermore, the examination of the morphologies of the products obtained at different stages of the reaction of Ag+ ions with polyglycol revealed that such a coordination is of utmost importance for the formation of the silver nanostructures, namely polyglycol provided lots of active sites for the coordination, nucleation, growth and serves as backbones for directing the assembly of the metal particles formed. The formation mechanism of the dendritic silver nanostructure was called a coordination–reduction–nucleation–growth–fractal growth process. The strong surface plasmon absorption bands at 470 nm for the zigzag silver and at 405 nm for the dendritic silver were found.  相似文献   

5.
Controlled synthesis of hierarchical Barium molybdate (BaMoO4) nanostructures with different morphologies, such as peanut-like, cube-like and flower-like, was successfully achieved in aqueous solution at room temperature. The obtained products were characterized by a scanning electron microscope (SEM) and an X-ray power diffractometer (XRD). The morphologies of the obtained products were found to be greatly dependent on reaction time, EDTA concentration and the [Ba2+]/[MoO42−] ratio. This controllable method could be readily extended to produce hierarchical Barium tungstate (BaWO4) nanostructures with peanut-like, dumbbell-like, sphere-like and flower-like morphologies. The photoluminescence (PL) properties of the obtained BaMoO4 and BaWO4 nanostructures exhibited strong dependence on the morphologies and sizes, respectively.  相似文献   

6.
A simple and facile hydrothermal route has been demonstrated for the shape-selective preparation of highly crystalline Gd2O2S:Eu3+ nanostructures, such as nanocrystals/nanoplates, nanosheets, nanobelts, nanotubes, nanorods, and nanowires are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM), photoluminescence (PL) techniques. The as-prepared samples are characterized using X-ray photoelectron spectra (XPS), to investigate the elementary states on the surfaces. The concentration of precursor chemicals, pH, the reaction time, and the temperature are important factors in the morphological control of Gd2O2S:Eu3+ nanostructures. The adjustment of these parameters can lead to an obvious shape evolution of products. The origin and nature of the opto-electronic transitions were observed using opto-impedance measurements. An erratum to this article can be found at  相似文献   

7.
Two kinds of tungsten oxide (WO3) square nanoplates have been prepared by a simple hydrothermal method using l(+)-tartaric acid or citric acid as assistant agents. The products are characterized by X-ray powder diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscopy (TEM). XRD, SEM and TEM images of the products illustrate that WO3 square nanostructures prepared in the presence of l(+)-tartaric acid have a hexagonal phase, length of ∼ 200 nm and thickness of ∼ 100 nm, while WO3 nanostructures synthesized in the presence of citric acid have an orthorhombic phase, length of ∼ 500 nm and thickness of ∼ 100 nm. Selected area electron diffraction (SAED) suggests that both of the as-prepared WO3 square nanoplates are single crystalline. The plausible growth mechanism for the formation of WO3 square nanostructures is also proposed.  相似文献   

8.
Ming-Guo Ma 《Materials Letters》2008,62(16):2512-2515
One-dimensional SrCO3 nanostructures assembled from nanocrystals have been successfully synthesized by a microwave-assisted aqueous solution method at 90 °C using Sr(NO3)2, (NH4)2CO3 and ethylenediamine (C2H8N2). Our experiments show that the microwave heating time plays an important role in the size and morphology of SrCO3. A rational mechanism based on the oriented attachment self-assembly is proposed for the formation of SrCO3 nanostructures. The products were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and selected-area electron diffraction (SAED). This method is simple, fast, low-cost and suitable for large-scale production of SrCO3 nanostructures with different morphologies. We expect that this method may be extended to the preparation of nanostructures of other kinds of carbonates.  相似文献   

9.
A simple and facile template-assisted hydrothermal route has been demonstrated for the shape-selective preparation of highly ordered single-crystalline Gd2O2S:Eu3+ nanostructures, such as nanotubes, nanorods and nanoflowers. These fabricated nanostructures possess desirable atomic structures, surfaces, morphologies and properties to meet the growing demands and specific requirements of new technologies. The concentration of precursor chemicals, the temperature, the reaction time, and the use of a capping agent are key factors in the morphological control of Gd2O2S:Eu3+ nanostructures. The morphology and the phase composition of the prepared nanostructures were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), energy disperse spectroscopy (EDS) and photoluminescence (PL). We believe this technique will be readily adopted in realizing other forms of various nanostructured materials.  相似文献   

10.
ZnO micro- and nanostructures with a variety of morphologies have been synthesized using Zn(NO3)2·6H2O and pyridine by a microwave-assisted aqueous solution method at 90 °C for 10 min. The pyridine has a significant influence on the morphology of ZnO. Various morphologies of ZnO (hexagonal columns, linked hexagonal needles, hollow structures, and hexagonal nanorings) were obtained by adjusting the concentration of pyridine. The effect of the type of other alkaline additive (aniline and triethanolamine) on the morphology of ZnO was also investigated. The products were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM).  相似文献   

11.
Bismuth molybdate (Bi2MoO6) nanoplates have been successfully synthesized by a simple hydrothermal process. The nanoplates were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, and IR spectroscopy. The effects of hydrothermal temperature and reaction time on the structures and morphologies of the nanoplates were investigated. On the basis of TEM observation of time series samples, a possible formation mechanism of the nanoplates was proposed. Optical absorption experiments revealed that Bi2MoO6 nanoplates had absorption in visible-light region, but a blue shift appeared compared with the corresponding bulk materials. Photocatalytic experiments showed that the nanoplates exhibited good photocatalytic activities for degradation of N,N,N′,N′-tetraethylated rhodamine (RhB) under visible-light irradiation (λ > 420 nm).  相似文献   

12.
A novel hydrothermal process using p-nitrobenzoic acid as structure-directing agent has been employed to synthesize plate-shaped WO3 nanostructures containing holes. The p-nitrobenzoic acid plays a critical role in the synthesis of such novel WO3 nanoplates. The morphology, structure and optical property of the WO3 nanoplates have been characterized by transmission electron microcopy (TEM), scanning electron microcopy (SEM), X-ray diffraction (XRD) and photoluminescence (PL). The lateral size of the nanoplates is 500-1000 nm, and the thickness is about 80 nm. The formation mechanism of WO3 nanoplates is discussed briefly. The gas sensitivity of WO3 nanoplates was studied to ethanol and acetone at different operation temperatures and concentrations. Furthermore, the WO3 nanoplate-based gas sensor exhibits high sensitivity for ethanol and acetone as well as quick response and recovery time at low temperature.  相似文献   

13.
The flower-like, pinon-like and faceted nanoplates (BiO)2CO3 micro/nanostructures were fabricated by a one-pot template-free method based on hydrothermal treatment of the aqueous mixture of bismuth citrate and sodium carbonate. The morphology of (BiO)2CO3 can be simply controlled by the reaction temperature. X-ray diffraction, scanning electron microscopy, UV–vis diffuse reflection spectra, and photoluminescence spectra were applied to analyze the microstructures and properties of the samples. The flower-like and pinon-like (BiO)2CO3 superstructures were hierarchically self-assembled by nanoplates and showed increased light absorption owing to the multiple light reflection between the nanoplates. The thickness of nanoplates was increased with the increasing reaction temperatures due to the preferred growth along the (110) plane. The (BiO)2CO3 with various micro/nanostructures showed morphology-dependent photocatalytic activity toward removal of aqueous RhB. The as-prepared flower-like (BiO)2CO3 microspheres exhibited highest photocatalytic activity due to the large surface area, increased light absorption, enhanced charge carriers separation, and special architectures of hierarchical nanoplates microspheres, exceeding that of the P25.  相似文献   

14.
Tb3+-doped LaOBr nanostructures including nanofibers, nanobelts, and hollow nanofibers were synthesized for the first time via calcinating the electrospun polyvinyl pyrrolidone/[La(NO3)3 + Tb(NO3)3 + NH4Br] composites. X-ray diffraction analysis revealed that LaOBr:Tb3+ nanostructures are tetragonal in structure with space group of P4/nmm. The morphologies and sizes of LaOBr:Tb3+ nanostructures were investigated using scanning electron microscope and transmission electron microscope. Under the excitation of 254-nm ultraviolet light, LaOBr:Tb3+ nanostructures exhibit the green emissions of predominant peak at 543 nm, which is ascribed to 5D4 → 7F5 transition of Tb3+ ions. It is found that the optimum doping concentration of Tb3+ ions in the LaOBr:Tb3+ nanofibers is 3 %. Interestingly, we found that the luminescence intensity of hollow nanofibers is obviously greater than that of nanofibers and nanobelts for LaOBr:Tb3+ under the same measuring conditions. Moreover, the luminescence of LaOBr:Tb3+ nanostructures are located in the green region in Commission Internationale de L’Eclairage chromaticity coordinates diagram. The formation mechanisms of LaOBr:Tb3+ nanofibers, nanobelts, and hollow nanofibers were also proposed. LaOBr:Tb3+ nanostructures are promising nanomaterials for applications in the fields of light display systems and optoelectronic devices.  相似文献   

15.
Barium carbonate (BaCO3) nanostructures with different morphologies were synthesized using Ba(NO3)2 and (NH4)2CO3 in the water/ethylene glycol (EG) mixed solvents by oil bath heating at 80 °C for 30 min. The molar ratio of water to EG had an effect on the morphology of BaCO3. The products were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and high-resolution transmission electron microscopy (HRTEM).  相似文献   

16.
Single-crystalline α-MnO2 three-dimensional nanostructures were synthesized via a novel redox reaction of KMnO4 and Cr(NO3)3 under hydrothermal conditions. The products were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy-dispersive spectroscopy (EDS), and high-resolution transmission electron microscopy (HRTEM). The addition of HNO3 into the reaction has a significant effect on the morphologies of the final products. The α-MnO2 three-dimensional nanostructures were obtained under the acidic condition, while α-MnO2 nanowires were obtained without the addition of HNO3. A mechanism for the growth of α-MnO2 three-dimensional nanostructures was proposed.  相似文献   

17.
ZnO nanostructures with flower-, rod-, and flake-like morphologies have been controllably synthesized using Zn(acac)2·H2O (acac = acetylacetonate) as a single-source precursor through a facile and fast microwave-assisted method. The morphologies of ZnO nanostructures can be systematically adjusted by using various surfactants. The ZnO products are characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and selected area electron diffraction. The results show that all ZnO nanostructures are of single-crystalline nature with hexagonal wurtzite structure. The possible formation mechanism for these ZnO nanostructures is proposed and their photoluminescence properties are also investigated.  相似文献   

18.
Monodispersed Gd2O2S:Eu3+ nanostructures with tunable morphologies have been selectively fabricated by solvothermal method in the presence of stable inorganic precursors avoiding metalorganic precursors. The size and morphology of the products were controlled successfully by adjusting the reaction conditions. The products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected-area electron diffraction (SAED) and X-ray photoelectron spectroscopy (XPS). The corresponding UV absorption and photoluminescence excitation spectra show a significant blue-shift confirming the quantum confinement effect. A possible growth mechanism for the formation of monodispersed Gd2O2S:Eu3+ nanocrystals has been proposed. The luminescence mechanism and the size dependence of their fluorescence properties are also discussed.  相似文献   

19.
A general surfactant-assisted wet chemical route has been developed for the synthesis of a variety of bismuth telluride (Bi2Te3) single-crystalline nanostructures with varied morphologies at different temperatures in which hydrazine hydrate plays as an important solvent. Bi2Te3 sheet grown nanoparticles, nanosheets and nanotubes have been synthesized by a simplest wet chemical route at 50, 70 and 100 °C within 4 h. Bi2Te3 sheet grown nanoparticles are obtained in agglomerate state and they are found with many wrinkles. Various types of Bi2Te3 nanotubes are also found which are tapered with one end open and the other closed. X-ray diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED) pattern and energy dispersive X-ray (EDX) spectroscopy were employed to characterize the powder product. It is found that all nanoparticles, nanosheets and nanotubes are well-crystallized nanocrystals and morphologies of the powder products are greatly affected by different synthesis temperatures. The formation mechanisms of bismuth telluride nanostructures are also discussed.  相似文献   

20.
Cu2S nanostructures prepared by Cu-cysteine precursor templated route   总被引:1,自引:0,他引:1  
Ling Jiang 《Materials Letters》2009,63(22):1935-1938
A facile Cu-cysteine precursor templated route for the synthesis of Cu2S nanowires, dendritic-like and flowerlike nanostructures is reported. The Cu-cysteine precursors are prepared through the reaction between Cu2+, l-cysteine and ethanolamine at room temperature, and the morphologies of Cu-cysteine precursors can be controlled by adjusting the molar ratio of l-cysteine to Cu2+. The Cu-cysteine precursors are used as both templates and source materials for the subsequent preparation of polycrystalline Cu2S nanostructures by thermal treatment, and the morphologies of the precursors can be well preserved after the thermal transformation to Cu2S nanostructures. The samples are characterized using X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy and Fourier transform infrared spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号