首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The thermal shock reliability and tensile properties of a newly developed quaternary Sn-1.2Ag-0.5Cu-0.4In (wt%) solder alloy were investigated and compared to those of ternary Sn-Ag-Cu based Pb-free solder alloys. It was revealed that the Sn-1.2Ag-0.5Cu-0.4In solder alloy shows better thermal shock reliability compared to the Sn-1.0Ag-0.5Cu and Sn-3.0Ag-0.5Cu solder alloys. The quaternary alloy has higher strength than Sn-1.0Ag-0.5Cu alloy, and higher elongation than Sn-3.0Ag-0.5Cu alloy. It was also revealed that the addition of indium promotes the formation of Ag3(Sn, In) phase in the solder joint during reflow process.  相似文献   

2.
Pd was chosen as a minor alloying element in a new Sn-1.2Ag-0.7Cu-0.4In solder alloy to improve the drop/shock reliability. The tensile properties and drop/shock reliability of the new Sn-1.2Ag-0.7Cu-0.4In-0.03Pd solder alloy was compared with those of the Sn-1.0Ag-0.5Cu and Sn-3.0Ag-0.5Cu alloys. The UTS, yield strength and elongation of Sn-1.2Ag-0.7Cu-0.4In-0.03Pd were superior to those of the other alloys tested. Sn-1.2Ag-0.7Cu-0.4In-0.03Pd showed outstanding drop/shock reliability compared to the representative Pb-free solder, Sn-3.0Ag-0.5Cu. Therefore, the Sn-1.2Ag-0.7Cu-0.4In-0.03Pd composition is assessed to be an alternative Pb-free solder composition that may replace Sn-3.0Ag-0.5Cu.  相似文献   

3.
We have evaluated the effect of wet chemical treatment on the interfacial bonding strength of Cu-to-Cu direct bonding. The oxide on a Cu-deposited wafer can be removed by a solution made of hydrofluoric acid and sulfuric acid (HF/H2SO4) or diluted hydrochloric acid (HCl/H2O), which can also improve the bonding quality of Cu-to-Cu bonds. Two 4-inch Cu-deposited wafers were bonded at 250 degrees C via the thermo-compression method. The interfacial adhesion energy of Cu-to-Cu bonding was quantitatively measured by the four-point bending method. After chemical pretreatment for 30 seconds with HF/H2SO4 and HCl:H2O solutions, the measured interfacial adhesion energies were 4.91 J/m2 and 5.51 J/m2, respectively. Microstructural examination of the Cu bonding interfaces showed that the interfacial bonding quality of Cu-to-Cu bonds improved under proper wet chemical etching conditions. Wafer-level cleaning by wet chemical treatment of the Cu surface was found to be a very effective way to improve the bonding quality of Cu bonds, even at bonding temperatures lower than 300 degrees C.  相似文献   

4.
新型纳米结构颗粒增强无铅复合钎料性能   总被引:3,自引:0,他引:3       下载免费PDF全文
为了解决传统复合钎料制备中强化颗粒容易粗化的问题,提高无铅复合钎料的性能,选用共晶Sn-3.5Ag、Sn-3.0Ag-0.5Cu钎料作为基体,3种不同类型具有纳米结构的有机-无机笼型硅氧烷齐聚物(POSS) 颗粒作为增强相而制成复合钎料。研究了复合钎料的铺展性能、钎焊接头的力学性能和抗蠕变性能。结果表明,复合钎料的润湿性能均优于基体钎料的润湿性能,复合钎料钎焊接头的剪切强度和蠕变断裂寿命均明显提高。在相同条件下,Sn-Ag-Cu基复合钎料钎焊接头的性能优于Sn-Ag基复合钎料钎焊接头。   相似文献   

5.
Multilayer Cu/Ni/Cu interlayers that form a thin layer of a Cu-rich transient liquid phase have been used to join alumina to alumina at 1150 °C. The method and bonding conditions yield an assembly bonded by a Ni-rich (>94 at% Ni) interlayer at a temperature substantially lower than those normally required for solid-state diffusion bonding with pure Ni interlayers. Flexure strengths of as-bonded beams ranged from 61 to 267 MPa with an average of 160 MPa and a standard deviation of ±63 MPa. The highest flexure strengths were observed in samples where failure occurred in the ceramic. Post-bonding anneals of 10 h duration in air and gettered-argon at 1000 °C decreased the average room temperature strength to 138 and 74 MPa, respectively. In as-processed and annealed samples, varying degrees of interfacial spinel formation are indicated. Spinel formation may contribute to the scatter in as-processed samples, and the decrease in strength values resulting from annealing.  相似文献   

6.
研究了铜及Cu-2.80%Sn-1.06%Al合金在3.0%NaCl溶液及流动海水中腐蚀性能,利用金相、扫描电镜及电化学特征分析了它们的耐蚀特性。结果表明,纯铜在21mV时发生阳极溶解,在海水冲刷作用下保护膜很快遭到破坏,腐蚀速度大,Cu-2.80%Sn-1.06%Al合金由于其表面形成的Cu、Sn和Al的混合氧化物保护膜均匀、致密、质硬、在流动海水冲刷、摩擦作用下,保护膜稳定性好,腐蚀速度小。  相似文献   

7.
在不同保温时间下,分别采用 Sn-3.0Ag-0.5Cu 和 Sn-3.0Ag-0.5Cu-3.0Bi 无铅软钎料,对表面镀镍的两种不同体积分数的 SiCP/6063Al 复合材料进行真空软钎焊。通过剪切强度测试、显微组织分析、能谱分析等手段研究了钎焊接头的组织和性能。结果表明:Bi 元素的加入改善了 Sn-3.0Ag-0.5Cu 钎料的铺展润湿性,降低了熔点,提高了焊缝的抗剪强度;在270℃保温35 min 时,Sn-3.0Ag-0.5Cu-3.0Bi 钎料钎焊接头抗剪强度达到最高值38.23 MPa;钎焊过程中只是两侧镀镍层间的焊接,钎料并未透过镍层与母材发生扩散反应。  相似文献   

8.
Ti-6Al-4V and QAl 10-3-1.5 diffusion bonding has been carried out with Ni/Cu interlayers. The diffusion-bonded joints are evaluated by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and microhardness test. Intermetallic compounds at the interface zone are detected by X-ray diffraction (XRD). Interfacial microstructure of TiNi+CuTis+α-Ti forms at the Ni/Ti-6Al-4V transition zone and Cu (ss. Ni) solid solution forms between Ni/Cu interlayers. The thickness of reaction layer (TiNi) increases with bonding time by a parabolic law: y2=K0exp(-150000/RT)t, and K0=2.9×10~7 m2/s is figured out from the experiment data.  相似文献   

9.
杨斌  陈剑明  邬善江  李明茂  张建波 《材料导报》2017,31(14):92-95, 104
采用熔炼铸造法制备了Sn-58Bi-(0~3)Ga焊料合金,研究了Ga元素含量对合金熔化特性、润湿和剪切性能的影响,并利用扫描电镜研究了Sn-58Bi-(0~3)Ga/Cu基体界面特征。结果表明,Ga元素的添加降低了合金的熔点,增大了合金的熔程,相比于Sn-58Bi合金,Sn-58Bi-1Ga焊料合金在铜基体的铺展率显著下降,剪切强度略有提高,随着Ga含量提高至2%、3%,合金的铺展率略有下降,剪切强度显著降低;Sn-58Bi/Cu界面主要组成元素为Sn和Cu,Sn-58Bi-(1~3)Ga/Cu界面上出现了明显的Ga和Cu元素偏聚界面层,结合特征点的能谱成分分析,确定了界面化合物的组成。  相似文献   

10.
Mixed Al–Ag–Cu and Al–Ag–Cu–Ti powders were used as interlayers for transient liquid phase diffusion bonding (TLP bonding) of SiC particulate reinforced 2618 aluminum alloy matrix composite (SiCp/2618Al MMC). The results show that by using mixed Al–Ag–Cu powder with the eutectic composition as an interlayer, SiCp/2618Al MMC can be TLP bonded at 540 °C, however, the joining layer is porous. Adding a certain amount of titanium into the Al–Ag–Cu interlayer, the TLP bonding quality can be improved. The titanium added into the Al–Ag–Cu interlayer has an effect of shortening the solidification time of the joining layer, thus decreasing SiC particles from the parent materials entering into the joining layer. The joints bonded using Al–Ag–Cu–Ti interlayers have a maximum shear strength of 101 MPa when 2.1% titanium is added.  相似文献   

11.
The effects of Ni content on the microstructure and the wetting behavior of Sn-9Zn-xNi solders on Al and Cu substrates, as well as the mechanical properties and electrochemical corrosion behavior of Al/Sn-9Zn-xNi/Cu solder joints, were investigated. The microstructure of Sn-9Zn-xNi revealed that tiny Zn and coarsened Ni 5 Zn 21 phases dispersed in the β-Sn matrix. The wettability of Sn-9Zn-xNi solders on Al substrate was much better than that on Cu substrate. With increasing Ni content, the wettability on Cu substrate was slightly improved but became worse on Al substrate. In the Al/Sn-9Zn-xNi/Cu joints, an Al4.2Cu3.2Zn0.7 intermetallic compound (IMC) layer formed at the Sn-9Zn-xNi/Cu interfaces, while an Al-Zn-Sn solid solution layer formed at the Sn-9Zn-xNi/Al interface. The mixed compounds of Ni3Sn4 and Al3Ni dispersed in the solder matrix and coarsened with increasing Ni content, thus leading to a reduction in shear strength of the Al/Sn-9Zn-xNi/Cu joints. Al particles were segregated at both interfaces in the solder joints. The corrosion potentials of Sn-9Zn-xNi solders continuously increased with increasing Ni content. The Al/Sn-9Zn-0.25Ni/Cu joint was found to have the best electrochemical corrosion resistance in 5% NaCl solution.  相似文献   

12.
Sn-20.0 wt%In (Sn-20.0In) alloy is a promising base material in Pb-free solders for low-temperature applications. Zn is often used as an additive to Pb-free solders to reduce the extent of undercooling during reflow. Cu is the most commonly used substrate in electronics industry. Interfacial stability at Sn–In–Zn/Cu joints is crucial to reliability of electronic products. In this study, interfacial reactions between Sn-20.0 wt%In-x wt%Zn (Sn-20.0In-xZn) solders and Cu where x = 0.5, 0.7, 1.0, 2.0, 3.0, and 5.0 at 150, 230, and 260 °C were experimentally examined. It is found that the reaction phase formation and interfacial morphologies are strongly influenced by Zn concentrations. The reaction phases evolve from the Cu6Sn5 phase, CuZn and Cu5Zn8 phase, to Cu5Zn8 phase with higher Zn doping in the solders. The Cu5Zn8 phase acted as a diffusion barrier and suppressed the growth of the Cu6Sn5 phase. The results indicate that 2.0 wt%Zn addition resulted in the gentlest reactions during both soldering and solid-state ageing in Sn-20.0In-xZn/Cu couples.  相似文献   

13.
Electrochemical migration of lead free solder joints   总被引:1,自引:0,他引:1  
Electrochemical migration (ECM) tests on lead bearing and lead free solder joints on Cu lamination on FR-4 board were conducted by applying constant voltage. This paper first studied the ECM of the soldered joints under distilled water after removing the fluxes. In addition, conditions under high temperature and high humidity were also set up to investigate the changes of the initial surface insulation resistance (SIR) with the residues of no clean fluxes. It is found under distilled water that dendrites of the solder joints take on different morphologies with the different migration elements. For the joints of Sn-37Pb and Sn-36Pb-2Ag solders, the main migration element is Pb. While that of Sn-3.5Ag and Sn-4Ag-0.5Cu solders, it is Cu that usually migrates and forms dendrites due to the poor wettability of the solder paste leads to part exposure of Cu substrate at the wetting brim. For Sn-3Ag-0.5Cu solder joints, Sn leads the migration. While for Sn-Zn-Bi solder joints, it is always Zn to migrate which means Zn is more mobile than Cu. The investigation on SIR shows the fluxes have great effect on the migration behavior. The failure time of the joints with the same solder alloy compositions have different failure time due to the different fluxes. The effect of the wettability and the role of Cu substrate on the ECM behavior of the solder joints are discussed in detail.  相似文献   

14.
We have investigated the influence of metal interlayers on the crystallinity and crystal orientation of aluminum nitride (AlN) thin films prepared on molybdenum (Mo) bottom electrodes. The interlayres were prepared between the Mo bottom electrodes and silicon substrates. Although the sputtering conditions of AlN films and Mo electrodes were the same, the Au/Ti interlayer drastically increased the XRD intensity of the (0002) AlN and (110) Mo planes, and decreased the full width at half maximum (FWHM) of the rocking curves of the (0002) AlN peaks from 9.22 to 3.02. The Au/Ti interlayers were effective for the improvement in the crystallinity and crystal orientation of AlN films deposited on Mo bottom electrodes. Furthermore, we clarified that the crystallinity and orientation of AlN films and Mo electrodes strongly depend on those of the Au interlayers, and the Au interlayers influence the morphologies of the Mo electrodes.  相似文献   

15.
Abstract

Thermal residual stresses are very detrimental to the mechanical resistance of metal–ceramic joints and thin metallic foils acting as stress relieving interlayers have been used to reduce their effect. The present work presents finite element method simulations of the residual stress field in Al2O3–AISI 304 steel joints using interlayers. Different interlayer materials (Ti, Ni, Mo, and Cu) were considered, either separately or in combination. Calculations show that among the different interlayer materials considered, Cu and Ti/Cu are most effective in reducing the thermal stresses and that this role is determined mainly by the ductility of the interlayer material. The calculated results were validated by shear tests performed on real joints obtained by diffusion bonding and it was concluded that residual stresses control the mechanical resistance of the joints.  相似文献   

16.
Transition liquid-phase insert metal bonding of Al2O3 and AISI 304 stainless steel based materials is investigated. This joining technique allows the continuous replenishment of the active solute which is consumed by the chemical reaction that occurs at the ceramic/filler metal interface. Replenishment is facilitated by employing a sandwich of filler materials comprising tin-based filler metal and amorphous Cu50Ti50 or NiCrB interlayers. During Al2O3/AISI 304 stainless steel bonding, the highest shear strength properties are produced using a bonding temperature of 500 °C. Thick reaction layers containing defects form at the ceramic/filler material interface when higher bonding temperatures are applied. Bonding at temperatures above 500 °C also increases the tensile residual stress generated at the periphery of Al2O3/AISI 304 stainless steel joints. The shear strength of joints produced using NiCrB interlayers markedly increased following heat treatment at 200 °C for 1.5 h. Heat treatment had little influence on the shear strength of the joint produced using Cu50Ti50 interlayers. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

17.
The wetting property of (Sn-9Zn)-2Cu (wt pct) on Ni substrate and the evolution of interfacial microstructure in (Sn-9Zn)-2Cu/Ni joints during soldering as well as isothermal aging were studied.The wetting ability of eutectic Sn-9Zn solder on Ni substrate was markedly improved by adding 2 wt pct Cu into this solder alloy.Plate-like Cu5Zn8 intermetallic compounds (IMCs) were detected in (Sn-9Zn)-2Cu solder matrix.A continuous Ni5Zn21 IMC layer was formed at (Sn-9Zn)-2Cu/Ni interface after soldering.This IMC layer kept its type and integrality even after aging at 170℃ for up to 1000 h.At the early aging stage (before 500 h), the IMC layer grew fast and its thickness followed a linear relationship with the square root of aging time.Thereafter,however, the thickness increased very slowly with longer aging time.When the joints were aged for 1000 h,a new IMC phase, (Cu,Ni)5Zn8, was found in the matrix near the interface.The formation of (Cu,Ni)5Zn8phase can be attributed to the diffusion of Ni atoms into the solder matrix from the substrate.  相似文献   

18.
In this work, Au–Sn eutectic bonding and Au–Sn thermo-compression bonding are studied for applications in hermetic packaging at wafer level. Eutectic bonding experiments were performed under vacuum or pure nitrogen at temperatures between 300 and 350 °C while thermo-compression bonding experiments were performed under vacuum at 270 °C. During these experiments, the solidification of electrodeposited Au–Sn alloy as well as the interaction of this alloy with W2N layers are studied. Some supplementary specific brazing experiments were performed using commercial sheets of eutectic Au–Sn alloy in order to understand the mechanisms of interactions between the Au–Sn alloy and the W2N layer and of solidification of the Au–Sn eutectic alloy. The melting and solidification process of eutectic Au–Sn alloy were studied by differential scanning calorimetry under different geometrical configurations such as commercial eutectic Au–Sn sheets alone, brazing joints performed by commercial eutectic Au–Sn alloy and samples made by thermo-compression bonding. Bonded wafers with good mechanical properties were characterized by cross-section scanning electron microscopy using energy dispersive X-ray mode. Some samples were characterized by transmission electron microscopy. The mechanical strength of the seal was checked by shear tests.  相似文献   

19.
Al2O3基板直接敷铜法的敷接机理研究   总被引:3,自引:0,他引:3  
本文采用直接敷铜工艺,1070℃流动氮气氛下保温3h制得当了强度达11.5kg/cm^2的直接铜AI2O3基板。介面产物CuAIO2的形成是获得较高结合强度的关键,敷接温度下,在界面上产生了能很好润湿AI2O3表面的Cu〖O〗共晶液体,并反应生连续的CuAlO2层降温时,共晶液体从Cu侧开始固化并淀析出CuO2颗9粒,当固化前沿与CuAlO2层相遇时,液相参与的界面反应停止,冷却至室温,即可获得C  相似文献   

20.
Journal of Materials Science: Materials in Electronics - The influence of solid–liquid electromigration on Cu-xCo/Sn-3.0Ag-0.5Cu/Cu-xCo (x?=?0, 30 and 50 wt.%) joints bonded at...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号