首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Photoinduced oxidation of arsenite to arsenate on ferrihydrite   总被引:2,自引:0,他引:2  
The photochemistry of an aqueous suspension of the iron oxyhydroxide, ferrihydrite, in the presence of arsenite has been investigated using attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), X-ray absorption near edge structure (XANES), and solution phase analysis. Both ATR-FTIR and XANES show that the exposure of ferrihydrite to arsenite in the dark leads to no change in the As oxidation state, but the exposure of this arsenite-bearing surface, which is in contact with pH 5 water, to light leads to the conversion of the majority of the adsorbed arsenite to the As(V) bearing species, arsenate. Analysis of the solution phase shows that ferrous iron is released into solution during the oxidation of arsenite. The photochemical reaction, however, shows the characteristics of a self-terminating reaction in that there is a significant suppression of this redox chemistry before 10% of the total iron making up the ferrihydrite partitions into solution as ferrous iron. The self-terminating behavior exhibited by this photochemical arsenite/ferrihydrite system is likely due to the passivation of the ferrihydrite surface by the strongly bound arsenate product.  相似文献   

2.
The kinetics of As(V) reduction by Shewanella putrefaciens strain CN-32 was investigated in suspensions of 0.2, 2, or 20 g L(-1) ferrihydrite, goethite, or boehmite at low As (10 μM) and lactate (25 μM) concentrations. Experimental data were compared with model predictions based on independently determined sorption isotherms and rates of As(V) desorption, As(III) adsorption, and microbial reduction of dissolved As(V), respectively. The low lactate concentration was chosen to prevent significant Fe(III) reduction, but still allowing complete As(V) reduction. Reduction of dissolved As(V) followed first-order kinetics with a 3 h half-life of As(V). Addition of mineral sorbents resulted in pronounced decreases in reduction rates (32-1540 h As(V) half-life). The magnitude of this effect increased with increasing sorbent concentration and sorption capacity (goethite < boehmite < ferrihydrite). The model consistently underestimated the concentrations of dissolved As(V) and the rates of microbial As(V) reduction after addition of S. putrefaciens (~5 × 10(9) cells mL(-1)), suggesting that attachment of S. putrefaciens cells to oxide mineral surfaces promoted As(V) desorption and thereby facilitated As(V) reduction. The interplay between As(V) sorption to mineral surfaces and bacterially induced desorption may thus be critical in controlling the kinetics of As reduction and release in reducing soils and sediments.  相似文献   

3.
2-Line ferrihydrite, a form of iron in uranium mine tailings, is a dominant adsorbent for elements of concern (EOC), such as arsenic. As ferrihydrite is unstable under oxic conditions and can undergo dissolution and subsequent transformation to hematite and goethite over time, the impact of transformation on the long-term stability of EOC within tailings is of importance from an environmental standpoint. Here, studies were undertaken to assess the rate of 2-line ferrihydrite transformation at varying As/Fe ratios (0.500-0.010) to simulate tailings conditions at the Deilmann Tailings Management Facility of Cameco Corporation, Canada. Kinetics were evaluated under relevant physical (~1 °C) and chemical conditions (pH ~10). As the As/Fe ratio increased from 0.010 to 0.018, the rate of ferrihydrite transformation decreased by 2 orders of magnitude. No transformation of ferrihydrite was observed at higher As/Fe ratios (0.050, 0.100, and 0.500). Arsenic was found to retard ferrihydrite dissolution and transformation as well as goethite formation.  相似文献   

4.
Recent studies have suggested that the interaction between phosphate and goethite includes ternary adsorption/ surface precipitation as well as surface complexformation. The ternary adsorption/surface precipitation process envisioned involves the dissolution of the goethite crystal and subsequent adsorption of iron on the surface-bound phosphate. Further evidence to support the suggested process is needed. The process was investigated using two approaches. First, the sorption of iron spiked into a slurry of phosphated goethite and the effect of the iron sorption on phosphate uptake kinetics were investigated to determine whether iron would be adsorbed on the phosphated surface and whether it would enhance phosphate adsorption. Lead was also spiked into solution for comparison. Second, changes in the xi-potential of phosphated goethite were monitored with time. Adsorption of iron on the surface of phosphated goethite should increase the xi-potential of the goethite. Iron spiked into a phosphated goethite slurry was adsorbed on the solid with a concurrent adsorption of phosphate. The iron adsorption did not change the slow phosphate adsorption kinetics. Lead spiked into the solution was also sorbed but to a lesser extent than iron and with a lower apparent P:Pb mole ratio. Lead addition also changed the phosphate adsorption kinetics. With time, the xi-potential of phosphated goethite became more positive, returning almost to the potential of unphosphated goethite at low surface coverages. The slow increase in xi-potential over time indicates that long-term reactions are occurring on the goethite surface, most likely involving the dissolution of goethite to release iron and the subsequent reaction between the iron and surface-bound phosphate. These results provide strong support for the surface precipitation model, and are inconsistent with models envisioning the reaction between phosphate and the goethite surface as involving only monolayer surface complex formation.  相似文献   

5.
This paper discusses the modeling of anion and cation leaching from complex matrixes such as weathered steel slag. The novelty of the method is its simultaneous application of the theoretical models for solubility, competitive sorption, and surface precipitation phenomena to a complex system. Selective chemical extractions, pH dependent leaching experiments, and geochemical modeling were used to investigate the thermodynamic equilibrium of 12 ions (As, Ca, Cr, Ba, SO4, Mg, Cd, Cu, Mo, Pb, V, and Zn) with aqueous complexes, soluble solids, and sorptive surfaces in the presence of 12 background analytes (Al, Cl, Co, Fe, K, Mn, Na, Ni, Hg, NO3, CO3, and Ba). Modeling results show that surface complexation and surface precipitation reactions limit the aqueous concentrations of Cd, Zn, and Pb in an environment where Ca, Mg, Si, and CO3 dissolve from soluble solids and compete for sorption sites. The leaching of SO4, Cr, As, Si, Ca, and Mg appears to be controlled by corresponding soluble solids.  相似文献   

6.
Effects of dissolved carbonate on arsenate [As(V)] reactivity and surface speciation at the hematite-water interface were studied as a function of pH and two different partial pressures of carbon dioxide gas [P(CO2) = 10(-3.5) atm and approximately 0; CO2-free argon (Ar)] using adsorption kinetics, pseudo-equilibrium adsorption/titration experiments, extended X-ray absorption fine structure spectroscopic (EXAFS) analyses, and surface complexation modeling. Different adsorbed carbonate concentrations, due to the two different atmospheric systems, resulted in an enhanced and/or suppressed extent of As(V) adsorption. As(V) adsorption kinetics [4 g L(-1), [As(V)]0 = 1.5 mM and I = 0.01 M NaCl] showed carbonate-enhanced As(V) uptake in the air-equilibrated systems at pH 4 and 6 and at pH 8 after 3 h of reaction. Suppressed As(V) adsorption was observed in the air-equilibrated system in the early stages of the reaction at pH 8. In the pseudo-equilibrium adsorption experiments [1 g L(-1), [As(V)]0 = 0.5 mM and I = 0.01 M NaCI], in which each pH value was held constant by a pH-stat apparatus, effects of dissolved carbonate on As(V) uptake were almost negligible at equilibrium, but titrant (0.1 M HCl) consumption was greater in the air-equilibrated systems (P(CO2) = 10(-3.5) atm) than in the CO2-free argon system at pH 4-7.75. The EXAFS analyses indicated that As(V) tetrahedral molecules were coordinated on iron octahedral via bidentate mononuclear ( 2.8 A) and bidentate binuclear (approximately equal to 3.3 A) bonding at pH 4.5-8 and loading levels of 0.46-3.10 microM m(-2). Using the results of the pseudo-equilibrium adsorption data and the XAS analyses, the pH-dependent As(V) adsorption under the P(CO2) = 10(-3.5) atm and the CO2-free argon system was modeled using surface complexation modeling, and the results are consistent with the formation of nonprotonated bidentate surface species at the hematite surfaces. The results also suggest that the acid titrant consumption was strongly affected by changes to electrical double-layer potentials caused by the adsorption of carbonate in the air-equilibrated system. Overall results suggest that the effects of dissolved carbonate on As(V) adsorption were influenced by the reaction conditions [e.g., available surface sites, initial As(V) concentrations, and reaction times]. Quantifying the effects of adsorbed carbonate may be important in predicting As(V) transport processes in groundwater, where iron oxide-coated aquifer materials are exposed to seasonally fluctuating partial pressures of CO2(g).  相似文献   

7.
Solution chemical techniques were used to investigate the oxidation of As(III) to As(V) in 0.011 M arsenite suspension of well-crystallized hexagonal birnessite (H-birnessite, 2.7 g L(-1)) at pH 5. Products of the reaction were studied by scanning electron microscopy coupled with energy dispersive spectroscopy (SEM-EDS), atomic force microscopy (AFM), and X-ray absorption near-edge structure spectroscopy (XANES). In the initial stage (first 74 h), chemical results have been interpreted quantitatively, and the reaction is shown to proceed in two steps as suggested by previous authors: 2>Mn(IV)O2 + H3AsO3 + H2O --> 2>Mn(III)OOH + H2AsO4- + H+ and 2>Mn(III)OOH + H3AsO3 + 3H+ --> 2Mn2+ + H2AsO4- + 2H2O. The As(III) depletion rate was lower (0.02 h(-1)) than measured in previous studies because of the high crystallinity of the H-birnessite sample used in this study. The surface reaction sites are likely located on the edges of H-birnessite layers rather than on the basal planes. The ion activity product of Mn(II) and As(V) reached after 74 h reaction time was the solubility product of a protonated manganese arsenate, having a chemical composition close to that of krautite as identified by XANES and EDS. Krautite precipitation reaction can be written as follows: Mn2+ + H2AsO4- + H2O = MnHAsO4 x H2O + H+ log Ks approximately -0.2. Equilibrium was reached after 400 h. The manganese arsenate precipitate formed long fibers that aggregated at the surface of H-birnessite. The oxidation reaction transforms a toxic species, As(III), to a less toxic aqueous species, which further precipitates with Mn2+ as a mixed As-Mn solid characterized by a low solubility product.  相似文献   

8.
Mineral processing effluents generated in hydrometallurgical industrial operations are sulfate based; hence it is of interest to investigate the effect sulfate matrix solution ("sulfate media") has on arsenate adsorption onto ferrihydrite. In this work, in particular, the influence of media (SO4(2-) vs NO3-), added gypsum, and pH alteration on the adsorption of arsenate onto ferrihydrite has been studied. The ferrihydrite precipitated from sulfate solution incorporated a significant amount of sulfate ions and showed a much higher adsorption capacityfor arsenate compared to nitrateferrihydrite at pH 3-8 and initial Fe/As molar ratios of 2, 4, and 8. Adsorption of arsenate onto sulfate-ferrihydrite involved ligand exchange with SO4(2-) ions that were found to be more easily exchangeable with increasing pH. Added gypsum to the adsorption system significantly enhanced the uptake of arsenate by ferrihydrite at pH 8. Equilibration treatment at acidic pH and addition of gypsum markedly improved the stability of adsorbed arsenate on ferrihydrite when pH was elevated. Comparison of arsenate adsorption onto ferrihydrite to coprecipitation of arsenate with iron(III) showed the latter process to lead to higher arsenic removal.  相似文献   

9.
10.
The sorption of uranium on mineral surfaces can significantly influence the fate and transport of uranium contamination in soils and groundwater. The rates of uranium adsorption and desorption on a synthetic goethite have been evaluated in batch experiments conducted at constant pH of 6 and ionic strength of 0.1 M. Adsorption and desorption reactions following the perturbation of initial states were complete within minutes to hours. Surface-solution exchange rates as measured by an isotope exchange method occur on an even shorter time scale. Although the uranium desorption rate was unaffected by the aging of uranium-goethite suspensions, the aging process appears to remove a portion of adsorbed uranium from a readily exchangeable pool. The distinction between sorption control and precipitation control of the dissolved uranium concentration was also investigated. In heterogeneous nucleation experiments, the dissolved uranium concentration was ultimately controlled by the solubility of a precipitated uranyl oxide hydrate. The X-ray diffraction pattern of the precipitate is characteristic of the mineral schoepite. Precipitation is kinetically hindered at low degrees of supersaturation. In one experiment, metastable sorption controlled dissolved uranium concentrations in excess of the solubility limit for more than 30 d.  相似文献   

11.
Biogeochemical transformation (inclusive of dissolution) of iron (hydr)oxides resulting from dissimilatory reduction has a pronounced impact on the fate and transport of nutrients and contaminants in subsurface environments. Despite the reactivity noted for pristine (unreacted) minerals, iron (hydr)oxides within native environments will likely have a different reactivity owing in part to changes in surface composition. Accordingly, here we explore the impact of surface modifications induced by phosphate adsorption on ferrihydrite reduction by Shewanella putrefaciens under static and advective flow conditions. Alterations in surface reactivity induced by phosphate changes the extent, decreasing Fe(Ill) reduction nearly linearly with increasing P surface coverage, and pathway of iron biomineralization. Magnetite is the most appreciable mineralization product while minor amounts of vivianite and green rust-like phases are formed in systems having high aqueous concentrations of phosphate, ferrous iron, and bicarbonate. Goethite and lepidocrocite, characteristic biomineralization products at low ferrous-iron concentrations, are inhibited in the presence of adsorbed phosphate. Thus, deviations in iron (hydr)oxide reactivity with changes in surface composition, such as those noted here for phosphate, need to be considered within natural environments.  相似文献   

12.
Metal partitioning in ferrihydrite suspensions may reach equilibrium only after a long reaction time. To determine key factors controlling the kinetics, we measured Cu and Pb uptake as a function of ferrihydrite morphology, reaction temperature, metal competition, and fulvic acid concentration over a period of 2 months. X-ray microscopy, which was used to probe ferrihydrite morphology in suspension, showed that drying irreversibly converted the gellike structure of fresh precipitate into dense aggregates. These dense aggregates sorbed Cu and Pb much slower than the gel. Temperature had a more pronounced effect on the kinetics of metal uptake by ferrihydrite gel than by dense ferrihydrite. Independently of treatment and time, Cu and Pb were bound to the ferrihydrite surface byformation of edge-sharing inner-sphere sorption complexes as confirmed by X-ray absorption fine-structure (XAFS) spectroscopy. This invariable binding mechanism, together with the observed effects of morphology and temperature, are in line with surface diffusion limiting the slow sorption process. The quantification of diffusion-limited surface sites in soils and sediments and the subsequent estimation of the effect of reaction time and temperature will be a challenge for properly predicting the fate of metals in the environment.  相似文献   

13.
Fresh precipitates, deposited from seepage waters of complex-ore mine-tailing impoundment at Zlaté Hory, Czech Republic, were characterized by means of X-ray diffraction, transmission electron microscopy, low temperature and in-field M?ssbauer spectroscopy, and Brunauer-Emmett-Teller surface area measurements. The prevailing phases (approximately 96 wt %) found in precipitates are poorly crystalline, 2-6 nm sized two-line ferrihydrite, forming globular aggregates of about 150 nm in diameter, rimmed by acicular irregular nanocrystals of goethite. These nanocrystalline ferrihydrite-goethite precipitates are of a relatively high chemical purity (approximately 3% SiO2, Zn approximately 1300 ppm, trace and rare earth elements < 100 ppm) and thus applicable in various nanotechnologies. With a surface area of 270 m2 g(-1), precipitate possesses a high catalytic activity in the decomposition of hydrogen peroxide, which is comparable with that found for commercially accessible FeO(OH) catalyst. Another superior aspect of such natural nanoparticles presents a cheap and suitable precursor for a thermally induced solid-state synthesis of the stable core-shell alpha-Fe-FeO nanoparticles that are well applicable in reductive technologies of groundwater treatment. Just the possibility of using the undesirable waste contaminating the environment in further environmental technologies is the key practical benefit discussed in this paper.  相似文献   

14.
Knowledge of arsenic redox kinetics is crucial for understanding the impact and fate of As in the environment and for optimizing As removal from drinking water. Rapid oxidation of As(III) adsorbed to ferrihydrite (FH) in the presence of hydrogen peroxide (H2O2) might be expected for two reasons. First, the adsorbed As(III) is assumed to be oxidized more readily than the undissociated species in solution. Second, catalyzed decomposition of H2O2 on the FH surface might also lead to As(III) oxidation. Attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy was used to monitor the oxidation of adsorbed As(III) on the FH surface in situ. No As(III) oxidation within minutes to hours was observed prior to H2O2 addition. Initial pseudo-first-order oxidation rate coefficients for adsorbed As(III), determined at H2O2 concentrations between 8.4 microM and 8.4 mM and pH values from 4 to 8, increased with the H2O2 concentration according to the equation log k(ox) (min(-1)) = 0.17 + 0.50 log [H2O] (mol/L), n = 21, r2 = 0.87. Only a weak pH dependence of log k(ox) was observed (approximately 0.04 logarithm unit increase per pH unit). ATR-FTIR experiments with As(III) adsorbed onto amorphous aluminum hydroxide showed that Fe was necessary to induce As(III) oxidation by catalytic H2O2 decomposition. Supplementary As(III) oxidation experiments in FH suspensions qualitatively confirmed the findings from the in situ ATR-FTIR experiments. Our results indicate that the catalyzed oxidation of As(III) by H2O2 on the surface of iron (hydr)oxides might be a relevant reaction pathway in environmental systems such as surface waters, as well as in engineered systems for As removal from water.  相似文献   

15.
Pair distribution function (PDF) analysis of neutron total scattering data from deuterated two-line ferrihydrite is consistent with the Keggin-related structural model for ferrihydrite published by Michel et al. (2007). Other models proposed in the literature, such as that of Drits et al. (1993), lead to inferior fits. Bond valence sums indicate that O(1) is bonded to a hydrogen atom, but the quality of the data is such that the exact position of the hydrogen could not be elucidated with confidence.  相似文献   

16.
We studied the ligand-enhanced sorption of uranyl ions (1-12 μM) on α-alumina colloids suspended in (and pre-equilibrated with) solutions at various concentrations of phosphate ions (P(T) = 0-900 μM). A highly sensitive technique, time resolved laser-induced fluorescence spectroscopy (TRLFS), was used to examine the chemical speciation of uranyl sorbed at trace concentrations (0.4-4 μmol U·g?1). The suspensions with P(T) ≥ 100 μM exhibited high uranyl adsorption, and a very high intensity of fluorescence that increased with the sorbed amounts of phosphate and uranyl. These samples exhibited similar spectral and temporal characteristics of fluorescence emission, evidencing a uniform speciation pattern and a single coordination environment for sorbed U, despite large variation in parameters such as aqueous uranyl speciation, U loading, and extent of coverage of alumina by secondary Al phosphates precipitating on the surface. The results pointed formation of surface precipitates of uranyl phosphates, which are characterized by high quantum yield, peak maxima at positions similar to those of U(VI) phosphate minerals and four lifetimes indicating distortions, in-homogeneities or varying number of water molecules in the lattice. The findings have major implications for our understanding of the mechanisms of immobilization of U at trace levels on surfaces of oxides submitted to phosphated solutions in soils with low pH.  相似文献   

17.
随着社会经济的飞速发展和科技水平的日益提高,我国地表水水质检测工作也取得了显著成效.鉴于此,本文从水质自动检测系统的应用现状入手,分析当前地表水水质自动监测系统应用中存在的主要问题及对策,为广大同仁们提供有益的借鉴和思考.  相似文献   

18.
This study examined the potential impact of microbially mediated reduction of Fe in the Fe(III)-(hydr)oxide mineral ferrihydrite on the mobility of As in natural waters. In microcosm experiments, the obligately anaerobic bacterium Geobacter metallireducens reduced on average 10% of the Fe(III) in ferrihydrite with varying sorbed As(V) surface coverages, which resulted in deflocculation of initially micron-sized As-bearing ferrihydrite aggregates to nanometersized colloids. No reduction of As(V) to As(III) was observed in microcosm samples. Measurement of Fe and As within operationally defined particulate, colloidal, and dissolved fractions of microcosm slurry samples revealed that little Fe or As was released from ferrihydrite as dissolved species. Microbially induced deflocculation of ferrihydrite in the presence of G. metallireducens was correlated with more negative zeta potential of ferrihydrite nanoparticles suggesting that G. metallireducens mediated As mobilization through alteration of ferrihydrite surface charge. TEM analysis and solution chemistry conditions suggested formation of a magnetite surface layer through topotactic recrystallization of ferrihydrite (2LFH) driven by sorbed Fe(II). The formation of nanometer-sized As-bearing colloids through microbially mediated reduction of Fe-(hydr)oxides has the potential to increase human As exposure by enhancing As mobility in natural waters and hindering As removal during subsequent drinking water treatment.  相似文献   

19.
Adsorption-desorption of arsenic is the primary factor that impacts the bioavailability and mobility of arsenic in soils. To examine the characteristics of arsenate [As(V)] adsorption-desorption, kinetic batch experiments were carried out on three soils having different properties, followed by arsenic release using successive dilutions. Adsorption of As(V) was highly nonlinear, with a Freundlich reaction order N much less than 1 for Olivier loam, Sharkey clay, and Windsor sand. Adsorption of arsenate by all soils was strongly kinetic, where the rate of As(V) retention was rapid initially and was followed by gradual or somewhat slow retention behavior with increasing reaction time. Freundlich distribution coefficients and Langmuir adsorption maxima exhibited continued increase with reaction time for all soils. Desorption of As(V) was hysteretic in nature and is an indication of lack of equilibrium retention and/or irreversible or slowly reversible processes. A sequential extraction procedure provided evidence that a significant amount of As(V) was irreversibly adsorbed on all soils. A multireaction model (MRM) with nonlinear equilibrium and kinetic sorption successfully described the adsorption kinetics of As(V) for Olivier loam and Windsor sand. The model was also capable of predicting As(V) desorption kinetics for both soils. However, for Sharkey clay, which exhibited strongest affinity for arsenic, an additional irreversible reaction phase was required to predict As(V) desorption or release with time.  相似文献   

20.
Fluoride contamination of groundwater, both anthropogenic and natural, is a major problem worldwide. In this study, fluoride removal by crushed limestone (99% pure calcite) was investigated by batch studies and surface-sensitive techniques from solutions with fluoride concentrations from 150 micromol/L (3 mg/L) to 110 mM (approximately 2100 mg/L). Surface-sensitive techniques, including atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) as well as zeta potential measurements, confirm that, in addition to precipitation reactions, adsorption of fluoride also occurs. Results indicate that fluoride adsorption occurs immediately over the entire calcite surface with fluorite precipitating at step edges and kinks, where dissolved Ca2+ concentration is highest. The PHREEQ geochemical model was applied to the observed data and indicates that existing models, especially at low fluoride concentrations and high pH (>7.5) are not equipped to describe this complex system, largely because the PHREEQ model includes only precipitation reactions, whereas a combination of adsorption and precipitation parameters are required.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号