首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
目的 L1跟踪对局部遮挡具有良好的鲁棒性,但存在易产生模型漂移和计算速度慢的问题。针对这两个问题,该文提出了一种基于判别稀疏表示的视觉跟踪方法。方法 考虑到背景和遮挡信息的干扰,提出了一种判别稀疏表示模型,并基于块坐标优化原理,采用学习迭代收缩阈值算法和软阈值操作设计出了表示模型的快速求解算法。结果 在8组图像序列中,该文方法与现有的4种经典跟踪方法分别在鲁棒性和稀疏表示的计算时间方面进行了比较。在鲁棒性的定性和定量比较实验中,该文方法不仅表现出了对跟踪过程中的多种干扰因素具有良好的适应能力,而且在位置误差阈值从0~50像素的变化过程中,其精度曲线均优于实验中的其他方法;在稀疏表示的计算时间方面,在采用大小为16×16和32×32的模板进行跟踪时,该文算法的时间消耗分别为0.152 s和0.257 s,其时效性明显优于实验中的其他方法。结论 与经典的跟踪方法相比,该文方法能够在克服遮挡、背景干扰和外观改变等诸多不良因素的同时,实现快速目标跟踪。由于该文方法不仅具有较优的稀疏表示计算速度,而且能够克服多种影响跟踪鲁棒性的干扰因素,因此可以将其应用于视频监控和体育竞技等实际场合。  相似文献   

2.
为了提高目标特征的表达能力和跟踪的鲁棒性,提出基于多线索的目标跟踪算法。该算法分别从目标颜色特征和结构特征来考虑,在此基础上提出了融合公式,从而使目标在不同场景中都能自适应变化,以提高跟踪的精度和性能,最后,通过几组仿真实验对该算法进行了验证。实验结果表明,该算法对于部分遮挡等情况具有良好的鲁棒性和跟踪精度。  相似文献   

3.
目的 由于目标在复杂场景中可能会发生姿态变化、物体遮挡、背景干扰等情况,目标跟踪仍然是一个具有挑战性的课题。目前判别性相关滤波方法在目标跟踪问题上获得了成功而又广泛的应用。标准的相关滤波方法基于循环偏移得到大量训练样本,并利用快速傅里叶变换加速求解滤波器,使其具有很好的实时性和鲁棒性,但边界偏移带来的消极的训练样本降低了跟踪效果。空间正则化的相关滤波跟踪方法引入空间权重函数,增强目标区域的滤波器作用,在增大了目标搜索区域的同时,也增加了计算时间,而且对于目标形变不规则,背景相似的情景也会增强背景滤波器,从而导致跟踪失败。为此,基于以上问题,提出一种自适应融合多种相关滤波器的方法。方法 利用交替方向乘子法将无约束的相关滤波问题转化为有约束问题的两个子问题,在子问题中分别采用不同的相关滤波方法进行求解。首先用标准的相关滤波方法进行目标粗定位,进而用空间正则化的相关滤波跟踪方法进行再定位,实现了目标位置和滤波模板的微调,提高了跟踪效果。结果 本文算法和目前主流的一些跟踪方法在OTB-2015数据集中100个视频上,以中心坐标误差和目标框的重叠率为评判标准进行了对比实验,本文算法能较好地处理多尺度变化、姿态变化、背景干扰等问题,在CarScale、Freeman4、Girl等视频上都表现出了最好的跟踪结果;本文算法在100个视频上的平均中心坐标误差为28.55像素,平均目标框重叠率为61%,和使用人工特征的方法相比,均高于其他算法,与使用深度特征的相关滤波方法相比,平均中心坐标误差高了6像素,但平均目标框的重叠率高了4%。结论 大量的实验结果表明,在目标发生姿态变化、尺度变化等外观变化时,本文算法均具有较好的准确性和鲁棒性。  相似文献   

4.
移动机器人的鲁棒输出跟踪   总被引:3,自引:1,他引:3  
本文讨论了一类不确定非完整系统的鲁棒输出跟踪问题。首先给出了在适当条件下受限系统的降阶状态实现及有关性质;进而给出了三轮移动机器人在纯滚动与非打滑条件下的简化模型,并结合变结构控制方法对该模型给出了具体的鲁棒输出跟踪控制规律。  相似文献   

5.
一种运动目标多特征点的鲁棒跟踪方法研究   总被引:5,自引:0,他引:5  
提出了一种基于特征光流分割和卡尔曼滤波估计的鲁棒性的运动目标跟踪方法。该方法具有很多特点:首先在特征光流的计算中采用由粗到细的层级匹配算法,因而能够计算大的运动速度和具有更好的匹配精度;其次采用了有效的遮挡判决算法,该算法综合利用了先验的信息,对噪声的干扰不敏感;最后建立了线性卡尔曼滤波模型,当特征点被遮挡或丢失时,能够预测它们的位置,这使得跟踪更具有主动性。实验表明,该方法具有高精度、快速跟踪和很好的鲁棒性。  相似文献   

6.
目的 针对现实场景中跟踪目标的快速运动、旋转、尺度变化、遮挡等问题,提出了基于卷积特征的核相关自适应目标跟踪的方法。方法 利用卷积神经网络提取高、低层卷积特征并结合本文提出的核相关滤波算法计算并获得高底两层卷积特征响应图。采用Coarse-to-Fine方法对目标位置进行估计,在学习得到1维尺度核相关滤波器估计尺度的基础上实时更新高低两层核相关滤波器参数,以实现自适应的目标跟踪。结果 实验选取公开数据集中的典型视频序列进行跟踪,测试了算法在目标尺度发生变化、遮挡、旋转等复杂场景下的跟踪性能并与多种优秀的跟踪算法在平均中心误差、平均重叠率等指标上进行了定量比较,在Singer1、Car4、Jogging、Girl、Football以及MotorRolling视频图像序列上的中心误差分别为8.71、6.83、3.96、3.91、4.83、9.23,跟踪重叠率分别为0.969、1.00、0.967、0.994、0.967、0.512。实验结果表明,本文算法与原始核相关滤波算法相比,平均中心位置误差降低20%,平均重叠率提高12%。结论 采用卷积神经网络提取高低两层卷积特征,高层卷积特征用于判别目标和背景,低层卷积特征用于预测目标位置并通过Coarse-to-Fine方法对目标位置进行精确的定位,较好地解决了由于目标的旋转和尺度变化带来的跟踪误差大的问题,提高了跟踪性能并能够实时更新学习。在目标尺度发生变化、遮挡、光照条件改变、目标快速运动等复杂场景下仍表现出较强的鲁棒性和适应性。  相似文献   

7.
针对目标遮挡、非刚性变换、光照变换等因素干扰产生的漂移问题,提出基于超像素和判别稀疏的运动目标跟踪算法。算法首先利用SLIC方法对运动目标的观测区域进行超像素分割,然后通过K-Means算法构建包含目标和背景的超像素字典,再基于判别稀疏表示和[?1]范数最小化框架求解候选目标的稀疏系数,同时结合粒子滤波框架和在线字典更新策略完成目标跟踪。实验结果表明,该算法在多种因素干扰的环境中具有较强的鲁棒性,能够准确稳定地进行在线目标跟踪。  相似文献   

8.
目的 在复杂背景下,传统模型匹配的跟踪方法只考虑了目标自身特征,没有充分考虑与其所处图像的关系,尤其是目标发生遮挡时,易发生跟踪漂移,甚至丢失目标。针对上述问题,提出一种前景判别的局部模型匹配(FDLM)跟踪算法。方法 首先选取图像帧序列前m帧进行跟踪训练,将每帧图像分割成若干超像素块。然后,将所有的超像素块组建向量簇,利用判别外观模型建立包含超像素块的目标模型。最后,将建立的目标模型作为匹配模板,采用期望最大化(EM)估计图像的前景信息,通过前景判别进行局部模型匹配,确定跟踪目标。结果 本文算法在前景判别和模型匹配等方面能准确有效地适应视频场景中目标状态的复杂变化,较好地解决各种不确定因素干扰下的跟踪漂移问题,和一些优秀的跟踪算法相比,可以达到相同甚至更高的跟踪精度,在Girl、Lemming、Liquor、Shop、Woman、Bolt、CarDark、David以及Basketball视频序列下的平均中心误差分别为9.76、28.65、19.41、5.22、8.26、7.69、8.13、11.36、7.66,跟踪重叠率分别为0.69、0.61、0.77、0.74、0.80、0.79、0.79、0.75、0.69。结论 实验结果表明,本文算法能够自适应地实时更新噪声模型参数并较准确估计图像的前景信息,排除背景信息干扰,在部分遮挡、目标形变、光照变化、复杂背景等条件下具有跟踪准确、适应性强的特点。  相似文献   

9.
基于快速鲁棒特征的CamShift跟踪算法   总被引:2,自引:0,他引:2  
为了解决CamShift算法由于对颜色敏感导致的跟踪效果变差或失效的问题,提出一种基于局部特征匹配的CamShift跟踪算法。采用快速鲁棒特征(SURF)方法在多通道图像的目标区域和搜索区域提取包含图像信息的局部特征点,并利用近似最近邻搜索对特征点进行匹配;使用提纯后的匹配结果得到特征点的位置、尺度及方向信息,对CamShift方法进行约束和更新,以提高跟踪精度和稳定性。实验结果表明,与经典CamShift算法和同类的改进算法相比,该算法能够较好地实现对复杂背景下旋转和放缩运动目标的实时跟踪。  相似文献   

10.
一种鲁棒的多特征融合目标跟踪新算法   总被引:3,自引:0,他引:3       下载免费PDF全文
仅利用单一的目标特征进行跟踪是大多数跟踪算法鲁棒性不高的重要原因。提出了一种新的多特征融合目标跟踪算法,该算法将目标的颜色、纹理、边缘、运动特征统一使用直方图模型进行描述,以降低算法受目标形变和部分遮挡的影响,在Auxiliary粒子滤波框架内将所有特征观测进行概率融合,以突出状态后验分布中目标真实状态对应的峰值,从而有效避免了复杂背景的干扰,并给出了一种有效的融合系数计算方法,使融合结果更加准确可靠。实验结果表明,该算法能同时处理刚性与非刚性目标的跟踪,较单一特征的跟踪算法具有明显的优势,对复杂背景下的跟踪具有较高的鲁棒性。与现有多特征融合算法的比较也证明了本文算法的有效性。  相似文献   

11.
In this paper, we propose a robust tracking algorithm to handle drifting problem. This algorithm consists of two parts: the first part is the G&D part that combines Generative model and Discriminative model for tracking, and the second part is the View-Based model for target appearance that corrects the result of the G&D part if necessary. In G&D part, we use the Maximum Margin Projection (MMP) to construct a graph model to preserve both local geometrical and discriminant structures of the data manifold in low dimensions. Therefore, such discriminative subspace combined with traditional generative subspace can benefit from both models. In addition, we address the problem of learning maximum margin projection under the Spectral Regression (SR) which results in significant savings in computational time. To further solve the drift, an online learned sparsely represented view-based model of the target is complementary to the G&D part. When the result of G&D part is unreliable, the view-based model can rectify the result in order to avoid drifting. Experimental results on several challenging video sequences demonstrate the effectiveness and robustness of our approach.  相似文献   

12.
Emerging significance of person-independent, emotion specific facial feature tracking has been actively tracked in the machine vision society for decades. Among distinct methods, the Constrained Local Model (CLM) has shown significant results in person-independent feature tracking. In this paper, we propose an automatic, efficient, and robust method for emotion specific facial feature detection and tracking from image sequences. A novel tracking system along with 17-point feature model on the frontal face region has also been proposed to facilitate the tracking of human basic facial expressions. The proposed feature tracking system keeps patch images and face shapes till certain number of key frames incorporating CLM-based tracker. After that, incremental patch and shape clustering algorithms is applied to build appearance model and structure model of similar patches and similar shapes respectively. The clusters in each model are built and updated incrementally and online, controlled by amount of facial muscle movement. The overall performance of the proposed Robust Incremental Clustering-based Facial Feature Tracking (RICFFT) is evaluated on the FGnet database and the Extended Cohn-Kanade (CK+) database. RICFFT demonstrates mean tracking accuracy of 97.45% and 96.64% for FGnet and CK+ database respectively. Also, RICFFT is more robust by minimizing average shape distortion error of 0.20% and 1.86% for FGnet and CK+ (apex frame) database, as compared with classic method CLM.  相似文献   

13.
目的 针对基于检测的目标跟踪问题,提出一种联合多特征融合和判别性外观模型的多目标跟踪算法。方法 对时间滑动窗内的检测器输出响应,采用双阈值法对相邻帧目标进行初级关联,形成可靠的跟踪片,从中提取训练样本;融合多个特征对样本进行鲁棒表达,利用Adaboost算法在线训练分类器,形成目标的判别性外观模型;再利用该模型对可靠的跟踪片进行多次迭代关联,形成目标完整的轨迹。结果 4个视频数据库的目标跟踪结果表明,本文算法能较好的处理目标间遮挡、目标自身形变,以及背景干扰。对TUD-Crossing数据库的跟踪结果进行了定量分析,本文算法的FAF(跟踪视频序列时,平均每帧被错误跟踪的目标数)为0.21、MT(在整个序列中,有超过80%视频帧被跟踪成功目标数占视频序列目标总数的比例)为84.6%、ML(在整个序列中,有低于20%视频帧被跟踪成功目标数占视频序列目标总数的比例)为7.7%、Frag(视频序列目标真值所对应轨迹在跟踪中断开的次数)为9、IDS(在跟踪中,目标身份的改变次数)为4; 与其他同类型多目标跟踪算法相比,本文算法在FAF和Frag两个评估参数上表现出色。结论 融合特征能对目标进行较为全面的表达、判别性外观模型能有效地应用于跟踪片关联,本文算法能实现复杂场景下的多目标跟踪,且可以应用到一些高级算法的预处理中,如行为识别中的轨迹检索。  相似文献   

14.
针对现有回归算法没有考虑利用特征与输出的关系,各输出之间的关系,以及样本之间的关系来处理高维数据的多输出回归问题易输出不稳定的模型,提出一种新的低秩特征选择多输出回归方法。该方法采用低秩约束去构建低秩回归模型来获取多输出变量之间的关联结构;同时创新地在该低秩回归模型上使用[L2,p]-范数来进行样本选择,合理地去除噪音和离群点的干扰;并且使用[L2,p]-范数正则化项惩罚回归系数矩阵进行特征选择,有效地处理特征与输出的关系和避免“维灾难”的影响。通过实际数据集的实验结果表明,提出的方法在处理高维数据的多输出回归分析中能获得非常好的效果。  相似文献   

15.
在线特征选择和遮挡处理的目标跟踪*   总被引:1,自引:0,他引:1  
为了提高相似物体干扰、光照变化等复杂环境下目标跟踪的稳定性,提出利用Fisher准则的在线选择鉴别性特征,将在线特征选择嵌入到跟踪算法中。但是,在目标被严重遮挡时仍在线选择鉴别性特征,会使目标模板偏移,导致跟踪失败。为了在目标被严重遮挡的情况下仍能在线选择鉴别性目标特征,选择一个可靠的子区域来推测被遮挡目标的颜色特征,再选择鉴别性特征。实验结果表明该方法在相似物体干扰、被跟踪目标被遮挡等复杂环境下极大地改善了跟踪的稳定性。  相似文献   

16.
目的 针对现有的超像素目标跟踪算法(RST)对同一类中分别属于目标和相似干扰物体的超像素块赋予相同特征置信度,导致难以区分目标和相似干扰物的问题,为此提出自适应紧致特征的超像素目标跟踪算法(ACFST)。方法 该方法在每帧的目标搜索区域内构建适合目标大小的自适应紧致搜索区域,并将该区域内外的特征置信度分别保持不变和降低。处于背景中的相似干扰物体会被该方法划分到紧致搜索区域外,其特征置信度被降低。当依据贝叶斯推理框架求出对应最大后验概率的目标时,紧致搜索区域外的特征置信度低,干扰物体归属目标的程度也低,不会被误判为目标。结果 在具有与目标相似干扰物体的两个视频集进行测试,本文ACFST跟踪算法与RST跟踪算法相比,平均中心误差分别缩减到5.4像素和7.5像素,成功率均提高了11%,精确率分别提高了10.6%和21.6%,使得跟踪结果更精确。结论 本文提出构建自适应紧致搜索区域,并通过设置自适应的参数控制紧致搜索区域变化,减少因干扰物体与目标之间相似而带来的误判。在具有相似物体干扰物的视频集上验证了本文算法的有效性,实验结果表明,本文算法在相似干扰物体靠近或与目标部分重叠时,能够保证算法精确地跟踪到目标,提高算法的跟踪精度,具有较强的鲁棒性,使得算法更能适应背景杂乱、目标遮挡、形变等复杂环境。  相似文献   

17.
赵颜果  宋展 《集成技术》2013,2(2):26-33
本文提出一种基于变换特征和分层模型的静态手势检测方法,所采用的分层模型由一系列手势表观模型和一个总的判别模型构成,其中每个手势表观模型各包含一个通用模板和一系列子类模板。将这些模板作为转移函数,可以从原始的梯度方向直方图特征中得到一组新的特征表示,即变换特征。将此变换特征用于构造分层模型中的判别模型,可以实现背景与手势以及不同手势间的精确分类。为了提高检测速度,算法在初始阶段引入了肤色滤波器方法,用于排除大部分的非肤色区域。实验表明,所述算法能够有效处理视角变换、手势倾斜、自然形变等因素带来的手势表观波动,处理速度可达20帧/秒以上,在鲁棒性和计算效率方面均体现了明显的优势。  相似文献   

18.
目的 手写文本行提取是文档图像处理中的重要基础步骤,对于无约束手写文本图像,文本行都会有不同程度的倾斜、弯曲、交叉、粘连等问题。利用传统的几何分割或聚类的方法往往无法保证文本行边缘的精确分割。针对这些问题提出一种基于文本行回归-聚类联合框架的手写文本行提取方法。方法 首先,采用各向异性高斯滤波器组对图像进行多尺度、多方向分析,利用拖尾效应检测脊形结构提取文本行主体区域,并对其骨架化得到文本行回归模型。然后,以连通域为基本图像单元建立超像素表示,为实现超像素的聚类,建立了像素-超像素-文本行关联层级随机场模型,利用能量函数优化的方法实现超像素的聚类与所属文本行标注。在此基础上,检测出所有的行间粘连字符块,采用基于回归线的k-means聚类算法由回归模型引导粘连字符像素聚类,实现粘连字符分割与所属文本行标注。最后,利用文本行标签开关实现了文本行像素的操控显示与定向提取,而不再需要几何分割。结果 在HIT-MW脱机手写中文文档数据集上进行文本行提取测试,检测率DR为99.83%,识别准确率RA为99.92%。结论 实验表明,提出的文本行回归-聚类联合分析框架相比于传统的分段投影分析、最小生成树聚类、Seam Carving等方法提高了文本行边缘的可控性与分割精度。在高效手写文本行提取的同时,最大程度地避免了相邻文本行的干扰,具有较高的准确率和鲁棒性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号