首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
To delineate the signaling pathway leading to glucose transport protein (GLUT4) translocation, we examined the effect of microinjection of the nonhydrolyzable GTP analog, guanosine 5'-O-(3-thiotriphosphate) (GTPgammaS), into 3T3-L1 adipocytes. Thirty minutes after the injection of 5 mM GTPgammaS, 40% of injected cells displayed surface GLUT4 staining indicative of GLUT4 translocation compared with 55% for insulin-treated cells and 10% in control IgG-injected cells. Treatment of the cells with the phosphatidylinositol 3-kinase inhibitor wortmannin or coinjection of GST-p85 SH2 fusion protein had no effect on GTPgammaS-mediated GLUT4 translocation. On the other hand, coinjection of antiphosphotyrosine antibodies (PY20) blocked GTPgammaS-induced GLUT4 translocation by 65%. Furthermore, microinjection of GTPgammaS led to the appearance of tyrosine-phosphorylated proteins around the periphery of the plasma membrane, as observed by immunostaining with PY20. Treatment of the cells with insulin caused a similar phosphotyrosine-staining pattern. Electroporation of GTPgammaS stimulated 2-deoxy-D-glucose transport to 70% of the extent of insulin stimulation. In addition, immunoblotting with phosphotyrosine antibodies after electroporation of GTPgammaS revealed increased tyrosine phosphorylation of several proteins, including 70- to 80-kDa and 120- to 130-kDa species. These results suggest that GTPgammaS acts upon a signaling pathway either downstream of or parallel to activation of phosphatidylinositol 3-kinase and that this pathway involves tyrosine-phosphorylated protein(s).  相似文献   

2.
Guanosine 5'-O-(3-thiotriphosphate) (GTPgammaS) treatment of permeabilized adipocytes results in GLUT4 translocation similar to that elicited by insulin treatment. However, although the selective phosphatidylinositol 3-kinase inhibitor, wortmannin, completely prevented insulin-stimulated GLUT4 translocation, it was without effect on GTPgammaS-stimulated GLUT4 translocation. In addition, insulin was an effective stimulant, whereas GTPgammaS was a very weak activator of the downstream Akt serine/threonine kinase. Consistent with an Akt-independent mechanism, guanosine 5'-O-2-(thio)diphosphate inhibited insulin-stimulated GLUT4 translocation without any effect on the Akt kinase. Surprisingly, two functionally distinct tyrosine kinase inhibitors, genistein and herbimycin A, as well as microinjection of a monoclonal phosphotyrosine specific antibody, inhibited both GTPgammaS- and insulin-stimulated GLUT4 translocation. Phosphotyrosine immunoblotting and specific immunoprecipitation demonstrated that GTPgammaS did not elicit tyrosine phosphorylation of insulin receptor or insulin receptor substrate-1. In contrast to insulin, proteins in the 120-130-kDa and 55-75-kDa range were tyrosine-phosphorylated following GTPgammaS stimulation. Several of these proteins were identified and include protein-tyrosine kinase 2 (also known as CAKbeta, RAFTK, and CADTK), pp125 focal adhesion tyrosine kinase, pp130 Crk-associated substrate, paxillin, and Cbl. These data demonstrate that the GTPgammaS-stimulated GLUT4 translocation utilizes a novel tyrosine kinase pathway that is independent of both the phosphatidylinositol 3-kinase and the Akt kinase.  相似文献   

3.
The exchangeable nucleotide-binding site of tubulin has been studied using diastereoisomers A (Sp) and B (Rp) of guanosine 5'-O-(1-thiotriphosphate) (GTP alpha S) in which the phosphorus atom to which sulfur is attached is chiral. GTP alpha S(A) (10 microM) nucleated assembly of purified tubulin (20 microM) into microtubules in buffer containing 0.1 M 2-(N-morpholino)ethanesulfonic acid with 3 mM Mg2+ and 1 mM EGTA, pH 6.6 at 37 degrees C. With 0.2 mM GTP alpha S(A), the critical concentration (Cc; minimum protein concentration required for assembly) was 8 microM tubulin. Neither 0.2 mM GTP nor GTP alpha S(B) promoted microtubule assembly in buffer with 0.5-6.75 mM Mg2+ and 20-70 microM tubulin. The Cc values for GTP alpha S-(A)-induced assembly of tubulin in buffer with 30% glycerol and of microtubule protein (tubulin and microtubule-associated proteins) in buffer were lower than for GTP. GTP alpha S(A)-induced microtubules were more stable to the cold and to Ca2+. GTP alpha S(A) and GTP but not GTP alpha S(B) bound tightly to tubulin at 4 degrees C. Although GTP alpha S(B) did not nucleate assembly, it did bind to tubulin since it was incorporated into the growing microtubule. Both isomers were hydrolyzed in the microtubules. These studies show that GTP alpha S(A) promotes tubulin assembly better than GTP and GTP alpha S(B) and that there is stereoselectivity at the alpha-phosphate binding region of tubulin. The stereoselectivity may be due to different MgGTP alpha S(A) and -(B) interactions with tubulin.  相似文献   

4.
Effects of 10 and 50 mumol/l guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) on 2-[125I]iodomelatonin binding in the chicken bursa of Fabricius and spleen were tested. In the chicken bursa of Fabricius, GTP gamma S increased the Kd of 2-[125I]iodomelatonin binding sites without affecting the Bmax value. In contrast, GTP gamma S caused both an increase in Kd and a reduction in Bmax of 2-[125I]iodomelatonin binding sites in the chicken spleen. Our results suggest the existence of subtypes of melatonin receptors with different receptor-G protein-effector complexes in the avian primary and secondary lymphoid systems.  相似文献   

5.
The phagocyte NADPH oxidase is activated during phagocytosis to produce superoxide, a precursor of microbicidal oxidants. The activation involves assembly of membrane-integrated cytochrome b558 comprising gp91(phox) and p22(phox), two specialized cytosolic proteins (p47(phox) and p67(phox)), each containing two Src homology 3 (SH3) domains, and the small G protein Rac. In the present study, we show that the N-terminal SH3 domain of p47(phox) binds to the C-terminal cytoplasmic tail of p22(phox) with high affinity (KD = 0.34 microM). The binding is specific to this domain among several SH3 domains including the C-terminal one of p47(phox) and the two of p67(phox) and requires the Pro156-containing proline-rich sequence but not other putative SH3 domain-binding sites of p22(phox). Replacement of Trp193 by Arg in the N-terminal SH3 domain completely abrogates the association with p22(phox). A mutant p47(phox) with this substitution is incapable of supporting superoxide production under cell-free activation conditions. These findings provide direct evidence that the interaction between the N-terminal SH3 domain of p47(phox) and the proline-rich region of p22(phox) is essential for activation of the NADPH oxidase.  相似文献   

6.
The leukocyte NADPH oxidase of neutrophils is a membrane-bound enzyme that catalyzes the production of O-2 from oxygen using NADPH as the electron donor. Dormant in resting neutrophils, the enzyme acquires catalytic activity when the cells are exposed to appropriate stimuli. During activation, the cytosolic oxidase components p47phox and p67phox migrate to the plasma membrane, where they associate with cytochrome b558, a membrane-integrated flavohemoprotein, to assemble the active oxidase. Oxidase activation can be mimicked in a cell-free system using an anionic amphiphile, such as sodium dodecyl sulfate or arachidonic acid, as an activating agent. In whole cells and under certain circumstances in the cell-free system the phosphorylation of p47phox mediates the activation process. It has been proposed that conformational changes in the protein structure of cytosolic factor p47phox may be an important part of the activation mechanism. We show here that the total protein steady-state intrinsic fluorescence (an emission maximum of 338 nm) exhibited by the tryptophan residues of p47phox substantially decreased when p47phox was treated with anionic amphiphiles. A similar decrease in fluorescence was also observed when p47phox was phosphorylated with protein kinase C. Furthermore, a red shift of emission maximum and an increase of quenching by ionic quenchers and acrylamide were observed in the presence of activators. These results indicate the occurrence of a conformational change in the protein structure of p47phox. We propose that this alteration in conformation results in the appearance of a binding site through which p47phox interacts with cytochrome b558 during the activation process.  相似文献   

7.
8.
Radiation is the primary modality of therapy for all commonly occurring malignant brain tumors, including medulloblastoma and glioblastoma. These two brain tumors, however, have a distinctly different response to radiation therapy. Medulloblastoma is very sensitive to radiation therapy, whereas glioblastoma is highly resistant, and the long-term survival of medulloblastoma patients exceeds 50%, while there are few long-term survivors among glioblastoma patients. p53-mediated apoptosis is thought to be an important mechanism mediating the cytotoxic response of tumors to radiotherapy. In this study, we compared the response to radiation of five cell lines that have wild-type p53: three derived from glioblastoma and two derived from medulloblastoma. We found that the medulloblastoma-derived cell lines underwent extensive radiation-induced apoptotic cell death, while those from glioblastomas did not exhibit significant radiation-induced apoptosis. p53-mediated induction of p21(BAX) is thought to be a key component of the pathway mediating apoptosis after the exposure of cells to cytotoxins, and the expression of mRNA encoding p21(BAX) was correlated with these cell lines undergoing radiation-induced apoptosis. The failure of p53 to induce p21(BAX) expression in glioblastoma-derived cell lines is likely to be of biologic significance, since inhibition of p21(BAX) induction in medulloblastoma resulted in a loss of radiation-induced apoptosis, while forced expression of p21(BAX) in glioblastoma was sufficient to induce apoptosis. The failure of p53 to induce p21(BAX) in glioblastoma-derived cell lines suggests a distinct mechanism of radioresistance and may represent a critical factor in determining therapeutic responsiveness to radiation in glioblastomas.  相似文献   

9.
10.
11.
Vitamin E (alpha-tocopherol), one of the most important natural antioxidants, is assumed to be beneficial in the prevention of cardiovascular diseases. alpha-Tocopherol exhibits acyl-peroxyl-radical scavenger properties and exerts cell-mediated actions in the hemovascular compartment, such as inhibition of superoxide anion (O-2) production by leukocytes. The aim of this study was to examine the mechanism underlying the inhibitory effect of alpha-tocopherol on O-2 production by human monocytes. In activated monocytes O-2 is produced by the NADPH-oxidase enzyme complex. The oxidase activation elicited by phorbol myristate acetate (PMA) requires membrane translocation of several cytosolic factors. We found that in human PMA-stimulated adherent monocytes, alpha-tocopherol (but not beta-tocopherol) inhibited O-2 production in intact cells but had no effect on a membrane preparation containing activated NADPH-oxidase, suggesting that alpha-tocopherol impairs the assembly process of the enzyme complex. We showed that translocation and phosphorylation of the cytosolic factor p47(phox) were reduced in monocytes preincubated with alpha-tocopherol. We verified that the tryptic phosphopeptide map of monocyte p47(phox) was similar to that of neutrophil p47(phox), indicating that several serine residues were phosphorylated. Peptides whose phosphorylation is dependent on protein kinase C (PKC) were phosphorylated to a lesser degree when p47(phox) was immunoprecipitated from alpha-tocopherol-treated monocytes. In vitro, the activity of PKC from monocytes was inhibited by alpha-tocopherol in a specific manner compared with that of beta-tocopherol or Trolox(R). Membrane translocation of PKC was not affected. These results show that alpha-tocopherol inhibits O-2 production by human adherent monocytes by impairing the assembly of the NADPH-oxidase and suggest that the inhibition of phosphorylation and translocation of the cytosolic factor p47(phox) results from a decrease in PKC activity.  相似文献   

12.
One of the major signaling pathways by which extracellular signals induce cell proliferation and differentiation involves the activation of extracellular signal-regulated kinases (ERKs). Because calmodulin is essential for quiescent cells to enter cell cycle, the role of calmodulin on ERK2 activation was studied in cultured fibroblasts. Serum, phorbol esters, or active Ras induced ERK2 activation in NIH 3T3 fibroblasts. This activation was not inhibited by calmodulin blockade. Surprisingly, inhibition of calmodulin prior to fetal bovine serum addition prolonged activation of ERK2. Furthermore, inactivation of calmodulin in serum-starved cells induced ERK2 phosphorylation that was dependent on MAP kinase kinase (MEK). Inactivation of calmodulin in serum-starved cells also induced activation of Ras, Raf, and MEK. On the contrary, tyrosine phosphorylation of tyrosine kinase receptors was not observed. These results indicate that calmodulin inhibits ERK2 activation pathway at the level of Ras. Calmodulin inhibition induced overexpression of p21(cip1) which was dependent on MEK activity. We propose that inhibition of Ras by calmodulin prevents the activation of ERK2 at low serum concentration. Thus, entering into the cell cycle after serum addition would imply the overcoming of the inhibitory effect of calmodulin and consequently ERK2 activation. Furthermore, down-regulation of Ras by calmodulin may be also important to determine the duration of ERK2 activation and to prevent a high p21(cip1) expression that would lead to an inhibition of cell proliferation.  相似文献   

13.
Both insulin and muscle contraction stimulate glucose transport activity. However, contraction stimulation does not involve the insulin signalling intermediate phosphatidylinositol 3-kinase (PI 3-kinase). Protein kinase B (PKB) has recently been identified as a direct downstream target of PI 3-kinase in the insulin signalling pathway. We have examined here whether the two stimuli share PKB as a convergent step in separate signalling pathways. Insulin stimulates both glucose transport, GLUT4 cell-surface content and PKB activity (by 4-6-fold above basal) in a wortmannin-sensitive manner in in vitro incubated rat soleus muscles. By contrast, muscle contraction, which stimulates glucose transport and the cell surface content of GLUT4 by 3-fold above basal levels, had no effect on PKB activity. These data demonstrate that PKB is not a mediator of contraction-induced glucose transport and GLUT4 translocation.  相似文献   

14.
The chromosomal location of the human gene for the alpha subunit of interleukin-5 receptor (IL5RA) has been determined. The human IL5RA gene was localized to the short arm of chromosome 3 by Southern blot analysis of DNA from a panel of mouse-human hybrid somatic cell lines. The IL5RA gene has been further localized to human chromosome region 3p24-3p26 by in situ hybridization of a molecularly cloned IL5RA cDNA fragment to metaphase chromosomes. The results suggest that the IL5RA locus is unlinked to other members of the hematopoietic receptor family. Assignment of the IL5RA gene to chromosome 3 at bands p26-p24 raises the possibility that it may be altered by certain nonrandom chromosomal abnormalities arising in human hematopoietic malignancies and solid tumors.  相似文献   

15.
The in-vivo biodistribution and pharmacokinetics in mice of 3'-azido-2',3'-dideoxythymidine (1, AZT), 2-bromomyristic acid (2) and their common prodrug, (+/-)-3'-azido-2',3'-dideoxy-5'-O-(2-bromomyristoyl)thymidine (3) are reported. The objectives of the work were to enhance the anti-human immunodeficiency virus and anti-fungal effects of 1 and 2 by improving their delivery to the brain and liver. The pharmacokinetics of AZT (beta t1/2 (elimination, or beta-phase, half-life) = 112.5 min; AUC (area under the plot of concentration against time) = 29.1 +/- 2.9 micromol g(-1) min; CL (blood clearance) = 10.5 +/- 1.1 mL min(-1) kg(-1)) and its ester prodrug (3, beta t1/2 = 428.5 min; AUC = 17.3 +/- 4.7 micromol g(-1) min; CL = 17.6 +/- 4.8 mL min(-1) kg(-1) were compared after intravenous injection of equimolar doses (0.3 mmol kg(-1)) via the tail vein of Balb/c mice (25-30 g). The prodrug was rapidly converted to AZT in-vivo, but plasma levels of AZT (peak concentration 0.17 micromol g(-1)) and AUC (12.3 micromol min g(-1)) were lower than observed after AZT administration (peak concentration 0.36 micromol g(-1); AUC 29.1 micromol min g(-1). The prodrug also accumulated rapidly in the liver immediately after injection, resulting in higher concentrations of AZT than observed after administration of AZT itself (respective peak concentrations 1.11 and 0.81 micromol g(-1); respective AUCs 42.5 and 12.7 micromol min g(-1)). Compared with doses of AZT itself, 3 also led to significantly higher brain concentration of AZT (25.7 compared with 9.8 nmol g(-1)) and AUCs (2.8 compared with 1.4 micromol min g(-1)). At the doses used in this study the antifungal agent 2-bromomyristic acid was measurable in plasma and brain within only 2 min of injection. Hepatic concentrations of 2-bromomyristic acid were higher for at least 2 h after dosing with 3 than after dosing with the acid itself. In summary, comparative biodistribution studies of AZT and its prodrug showed that the prodrug led to higher concentrations of AZT in the brain and liver. Although the prodrug did not result in measurably different concentrations of 2-bromomyristic acid in the blood and brain, it did lead to levels in the liver which were higher than those achieved by dosing with the acid itself.  相似文献   

16.
17.
18.
p21-activated protein kinase gamma-PAK (Pak2, PAK I) is cleaved by CPP32 (caspase 3) during apoptosis and plays a key role in regulation of cell death. In vitro, CPP32 cleaves recombinant gamma-PAK into two peptides; 1-212 contains the majority of the regulatory domain whereas 213-524 contains 34 amino acids of the regulatory domain plus the entire catalytic domain. Following cleavage, both peptides become autophosphorylated with [gamma-32P]ATP. Peptide 1-212 migrates at 27,000 daltons (p27) upon SDS-polyacrylamide gel electrophoresis and at 32,000 daltons following autophosphorylation on serine (p27P); the catalytic subunit migrates at 34,000 daltons (p34) before and after autophosphorylation on threonine. Following caspase cleavage, a significant lag (approximately 5 min) is observed before autophosphorylation and activity are detected. When gamma-PAK is autophosphorylated with ATP(Mg) alone and then cleaved, only p27 contains phosphate, and the enzyme is inactive with exogenous substrate. After autophosphorylation of gamma-PAK in the presence of Cdc42(GTPgammaS) or histone 4, both cleavage products contain phosphate and gamma-PAK is catalytically active. Mutation of the conserved Thr-402 to alanine greatly reduces autophosphorylation and protein kinase activity following cleavage. Thus activation of gamma-PAK via cleavage by CPP32 is a two-step mechanism wherein autophosphorylation of the regulatory domain is a priming step, and activation coincides with autophosphorylation of the catalytic domain.  相似文献   

19.
Previous studies have reported inhibition of A431 squamous carcinoma cell growth by nanomolar concentrations of epidermal growth factor (EGF), a potent mitogen for cells of epithelial origin. In this study, we examined potential mechanisms through which inhibition of keratinocyte growth mediated by EGF might occur by analysing components of the cell cycle regulatory machinery in A431, HN6 and HN30 keratinocytes in the presence of growth inhibitory or growth stimulatory doses of EGF. Treatment of cells with 25 pM EGF produced an increase in [3H]thymidine incorporation in A431, HN6 and HN30 cells, with respect to control cultures. Exposure to 2.5 nM EGF reduced [3H]thymidine incorporation in A431 cells and HN6 cells to 11% and 70% of control levels, respectively, whereas HN30 cells continued to proliferate in the presence of EGF. [3H]thymidine incorporation assays carried out over 24 h revealed repression of DNA synthesis in A431 cells after 12 h exposure to 2.5 nM EGF compared to untreated cells. Flow cytometry studies demonstrated accumulation of cells in G0/G1 after addition of 2.5 nM, but not 25 pM EGF. Western blot analysis revealed elevation of p21 (WAF1/CIP1/SDI1) protein levels in A431 and HN6 cells under growth-inhibitory conditions. Stimulatory doses of EGF did not induce p21 in these cells. Northern blot hybridization demonstrated elevated levels of p21 mRNA within 4 h of exposure of A431 cells to 2.5 nM EGF, which remained elevated above basal levels at 24 h. In vitro kinase assays demonstrated temporal differences in CDK2 and CDK6 activities which were related to EGF concentration. Immunocomplex Western blotting demonstrated increased association of p21 with CDK2 and CDK6 in A431 cells treated with 2.5 nm EGF. Furthermore, temporal alterations in the association of PCNA with p21 and with CDK6 were observed. The data indicate that p21 is a likely mediator of EGF-induced growth-inhibition, probably through mechanisms involving sequestration of PCNA and inhibition of CDK activity.  相似文献   

20.
Treatment of Swiss 3T3 cells with cytotoxic necrotizing factor 1 (CNF1) from Escherichia coli and dermonecrotic toxin (DNT) from Bordetella bronchiseptica, which directly target and activate p21(rho), stimulated tyrosine phosphorylation of focal adhesion kinase (p125(fak)) and paxillin. Tyrosine phosphorylation induced by CNF1 and DNT occurred after a pronounced lag period (2 h), and was blocked by either lysosomotrophic agents or incubation at 22 degrees C. CNF1 and DNT stimulated tyrosine phosphorylation of p125(fak) and paxillin, actin stress fiber formation, and focal adhesion assembly with similar kinetics. Cytochalasin D and high concentrations of platelet-derived growth factor disrupted the actin cytoskeleton and completely inhibited CNF1 and DNT induced tyrosine phosphorylation. Microinjection of Clostridium botulinum C3 exoenzyme which ADP-ribosylates and inactivates p21(rho) function, prevented tyrosine phosphorylation of focal adhesion proteins in response to either CNF1 or DNT. In addition, our results demonstrated that CNF1 and DNT do not induce protein kinase C activation, inositol phosphate formation, and Ca2+ mobilization. Moreover, CNF1 and DNT stimulated DNA synthesis without activation of p42(mapk) and p44(mapk) providing additional evidence for a novel p21(rho)-dependent signaling pathway that leads to entry into the S phase of the cell cycle in Swiss 3T3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号