共查询到19条相似文献,搜索用时 85 毫秒
1.
2.
混沌大洪水算法求解函数优化问题* 总被引:3,自引:0,他引:3
针对函数优化问题,提出一种混沌大洪水混合优化算法,该混合算法基于大洪水算法寻优思想和混沌序列的内在随机性、遍历性和规律性特点。算法在Delphi7环境下编程实现,针对几个典型复杂函数进行优化测试,仿真结果表明,混沌大洪水算法是一种简单有效的算法,在运行效率上明显优于其他算法。 相似文献
3.
4.
5.
6.
混沌粒子群优化算法研究 总被引:8,自引:0,他引:8
利用混沌运动的遍历性、随机性和规律性等特点,提出一种求解优化问题的混沌粒子群优化(CPSO)算法.该算法的基本思想是采用混沌初始化进行改善个体质量和利用混沌扰动避免搜索过程陷入局部极值.典型复杂函数优化仿真结果表明该方法是一种较简单有效的算法. 相似文献
7.
基于混沌搜索的粒子群优化算法 总被引:28,自引:6,他引:28
粒子群优化算法(PSO)是一种有效的随机全局优化技术。文章把混沌优化搜索技术引入到PSO算法中,提出了基于混沌搜索的粒子群优化算法。该算法保持了PSO算法结构简单的特点,改善了PSO算法的全局寻优能力,提高的算法的收敛速度和计算精度。仿真计算表明,该算法的性能优于基本PSO算法。 相似文献
8.
混沌神经网络智能集成算法优化策略 总被引:6,自引:0,他引:6
为了将神经网络的通用性、灵活性与混沌优化易于跳出局部最优解达到全局最优、搜索效率高、对优化条件的要求不高(不需具有连续性和可微性)的优点有机地结合起来,智能集成了混沌神经网络优化算法。该算法寻优效率高,通用性强,具有良好的应用前景和再开发潜力。 相似文献
9.
10.
不同一维混沌映射的优化性能比较研究* 总被引:1,自引:0,他引:1
选择Logistic、Tent、ICMIC、Bernouilli shift、Chebyshev和Sine映射进行分析,比较不同一维混沌映射在解决非线性优化问题时的混沌搜索效果。使用了四种二维函数测试六种映射的全局寻优能力、收敛速度和解的精度,仿真比较了它们的优化性能,得出六种映射在收敛速度和解的精度方面的性能比较结论。 相似文献
11.
变尺度混沌优化方法及其应用 总被引:171,自引:12,他引:171
基于混沌变量,提出一种变尺度混沌优化方法,该方法不断缩小优化变量的搜索空间并不断提高搜索精度,从而有较高的搜索效率,应用该方法对6个测试函数进行优化计算得到了满意的效果。 相似文献
12.
文章结合遗传算法优化的反演性与混沌优化方法的遍历性,提出了混沌遗传算法,并将其应用于优化问题的求解.实验结果表明,与标准遗传算法比较,该算法具有更好的收敛性能与搜索效率. 相似文献
13.
混沌遗传算法及其在函数优化中的应用 总被引:11,自引:0,他引:11
将混沌优化和遗传算法结合起来,提出了混沌遗传算法(CGA,Chaos Genetic Algorithm),并将其应用于函数优化问题的求解。通过在种群进化的不同阶段引入混沌优化操作,大大提升了遗传算法的整体性能。实验结果表明,与标准遗传算法(SGA)相比,该算法能更有效地求得全局最优解,具有更快的收敛速度。 相似文献
14.
变尺度混沌优化神经网络的研究 总被引:5,自引:0,他引:5
基于变尺度混沌优化的方法可以利用混沌变量的特定内在随机性和遍历性来跳出局部最优点,并可以变尺度搜索提高局部空间的搜索速度和精度。把该方法应用到神经网络的权值优化中,可以得到很好的效果。 相似文献
15.
一种混沌粒子群嵌入优化算法及其仿真 总被引:1,自引:0,他引:1
为克服混沌粒子群优化(CPSO)算法由于采用随机数作为算法参数而不能保证种群多样性和优化遍历性的缺陷,通过将混沌变量嵌入到常规粒子群优化算法(PSO)中,使PSO算法中的惯性权值和随机数用混沌随机序列来替代,提出了一种新的混沌粒子群嵌入优化算法(CEPSO),以充分利用混沌运动的随机性、遍历性克服粒子群优化算法容易陷入局部最优的缺点.通过复杂多维函数的寻优测试,验证了本算法的有效性,并将仿真结果与混沌粒子群优化算法进行比较,证明了CEPSO算法更具有较强的全局搜索能力和收敛速度. 相似文献
16.
17.
混沌优化方法及其应用* 总被引:360,自引:13,他引:360
利用混沌运动的遍历性、随机性、“规律性”等特点,本文提出了一种混沌优化方法(COA)。用混沌优化方法对一类连续复杂对象的优化问题进行优化,其效率比一些目前广泛应用的随机优化方法如SAA,CA等要高得多,而且使用方便。 相似文献
18.
蚁群混沌混合优化算法 总被引:2,自引:2,他引:2
为了克服混沌搜索的盲目性,提出了一种蚁群算法和混沌优化算法相结合的混合优化算法,该算法利用蚁群算法中信息素正反馈的思想指导当前混沌搜索的区域。工作蚁群按照信息素的浓度高低,分别按照不同的概率搜索不同的搜索区域,从而可减少混沌盲目搜索的次数。仿真结果表明,该方法能够明显提高混沌优化算法的寻优效率,同时算法的通用性将有所提高。另外,对于含有多个全局最优解的函数,在一次寻优过程中,该算法可以找到全部最优解,这是通常混沌搜索算法所不具备的。 相似文献