首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dense BaTiO3 ceramics consisting of submicrometer grains were prepared using the spark plasma sintering (SPS) method. Hydrothermally prepared BaTiO3 (0.1 and 0.5 µm) was used as starting powders. The powders were densified to more than similar/congruent95% of the theoretical X-ray density by the SPS process. The average grain size of the SPS pellets was less than similar/congruent1 µm, even by sintering at 1000-1200°C, because of the short sintering period (5 min). Cubic-phase BaTiO3 coexisted with tetragonal BaTiO3 at room temperature in the SPS pellets, even when well-defined tetragonal-phase BaTiO3 powder was sintered at 1100° and 1200°C and annealed at 1000°C, signifying that the SPS process is effective for stabilizing metastable cubic phase. The measured permittivity was similar/congruent7000 at 1 kHz at room temperature for samples sintered at 1100°C and showed almost no dependence on frequency within similar/congruent100-106 Hz; the permittivity at 1 MHz was 95% of that at 1 kHz.  相似文献   

2.
Lead-based piezoelectric ceramics typically require sintering temperatures higher than 1000°C at which significant lead loss can occur. Here, we report a double precursor solution coating (PSC) method for fabricating low-temperature sinterable polycrystalline [Pb(Mg1/3Nb2/3)O3]0.63-[PbTiO3]0.37 (PMN–PT) ceramics. In this method, submicrometer crystalline PMN powder was first obtained by dispersing Mg(OH)2-coated Nb2O5 particles in a lead acetate/ethylene glycol solution (first PSC), followed by calcination at 800°C. The crystalline PMN powder was subsequently suspended in a PT precursor solution containing lead acetate and titanium isopropoxide in ethylene glycol to form the PMN–PT precursor powder (second PSC) that could be sintered at a temperature as low as 900°C. The resultant d 33 for samples sintered at 900°, 1000°, and 1100°C for 2 h were 600, 620, and 700 pm/V, respectively, comparable with the known value. We attributed the low sintering temperature to the reactive sintering nature of the present PMN–PT precursor powder. The reaction between the nanosize PT and the submicrometer-size PMN occurred roughly in the same temperature range as the densification, 850°–900°C, thereby significantly accelerating the sintering process. The present PSC technique is very general and should be readily applicable to other multicomponent systems.  相似文献   

3.
Transparent polycrystalline Nd:YAG ceramics were fabricated by solid-state reactive sintering a mixture of commercial Al2O3, Y2O3, and Nd2O3 powders. The powders were mixed in methanol and doped with 0.5 wt% tetraethoxysilane (TEOS), dried, and pressed. Pressed samples were sintered from 1700° to 1850°C in vacuum without calcination. Transparent fully dense samples with average grain sizes of ∼50 μm were obtained at 1800°C for all Nd2O3 levels studied (0, 1, 3, and 5 at.%). The sintering temperature was little affected by Nd concentration, but SiO2 doping lowered the sintering temperature by ∼100°C. Abnormal grain growth was frequently observed in samples sintered at 1850°C. The Nd concentration was determined by energy-dispersive spectroscopy to be uniform throughout the samples. The in-line transmittance was >80% in the 350–900 nm range regardless of the Nd concentration. The best 1 at.% Nd:YAG ceramics (2 mm thick) achieved 84% transmittance, which is equivalent to 0.9 at.% Nd:YAG single crystals grown by the Czochralski method.  相似文献   

4.
Silicon nitride ceramics were prepared by spark plasma sintering (SPS) at temperatures of 1450°–1600°C for 3–12 min, using α-Si3N4 powders as raw materials and MgSiN2 as sintering additives. Almost full density of the sample was achieved after sintering at 1450°C for 6 min, while there was about 80 wt%α-Si3N4 phase left in the sintered material. α-Si3N4 was completely transformed to β-Si3N4 after sintering at 1500°C for 12 min. The thermal conductivity of sintered materials increased with increasing sintering temperature or holding time. Thermal conductivity of 100 W·(m·K)−1 was achieved after sintering at 1600°C for 12 min. The results imply that SPS is an effective and fast method to fabricate β-Si3N4 ceramics with high thermal conductivity when appropriate additives are used.  相似文献   

5.
The sinterability and decomposition of PLZT, (Pb,La)(Zr,Ti)O3, depend on the temperature and soaking time of both the calcination and sintering temperature. They were determined from the density, linear shrinkage, weight loss, and appearance of extra phases. At moderate calcination temperatures and times, there is no escape of PbO from the PLZT. At calcination temperatures higher than 1050°C and soaking times above 3 h, PbO escapes, and ZrO2 and La2Zr2O7 can be detected. Even when sintered in a PbO-rich atmosphere, some PbO evaporates during sintering either from free PbO or from the PbO bound in the PLZT in regions in the outer surfaces of the sintered body. An aggressive depletion of PbO during sintering can result in a complete disappearance of the grain boundary phase, giving an intragranular fracture.  相似文献   

6.
Spark plasma sintering (SPS) was used to fabricate bismuth titanate (Bi4Ti3O12) ceramics. The densification, microstructure development and dielectric properties were investigated. It was found that the densification process was greatly enhanced during SPS. The sintering temperature was 200°C lower and the microstructure was much finer than that of the pressureless sintered ceramics, and dense compacts with a high density of over 99% were obtained at a wide temperature range of 800°–1100°C. Dielectric property measurement indicated that the volatilization of Bi3+ was greatly restrained during SPS, resulting in an unprecedented low dielectric loss for pure Bi4Ti3O12 ceramics.  相似文献   

7.
The effect of spark plasma sintering (SPS) on the densification behavior of Pb(Mg1/3Nb2/3)O3–PbTiO3 ceramics has been investigated. Specimens with a density of >99% of the theoretical density (TD) were obtained using SPS treatment at 900°C. Through normal sintering at 1200°C, however, the density of the specimen was only ∼92% of TD.  相似文献   

8.
Dense PbTiO3 ceramics consisting of submicrometer-sized grains were prepared using the spark-plasma-sintering (SPS) method. Hydrothermally prepared PbTiO3 (0.1 μm) was used as a starting powder. The powder was densified to ≳98% of the theoretical X-ray density by the SPS process. The average grain size of the spark-plasma-sintered ceramics (SPS ceramics) was ≲1 μm, even after sintering at 900°–1100°C, because of the short sintering period (1–3 min). The measured permittivity of the SPS ceramics showed almost no frequency dependence over the range 101–106 Hz, mainly because pores were absent from the ceramics. The coercive field of the SPS ceramics was somewhat higher than that of conventionally sintered ceramics, which could be attributed to the small-grained microstructures of the SPS ceramics.  相似文献   

9.
Transparent lead lanthanum zirconate titanate (PLZT) ceramics were fabricated from fine powders using an inexpensive two-stage sintering technique. The powders were prepared by hydrolysis from low-cost inorganic precursors. In the two-stage sintering method, uniaxially pressed green pellets were densified to nearly theoretical values in an oxygen gas atmosphere during the first-stage sintering, at 1000°C for 1 h, and then residual, free lead oxide in the pellets was removed by second-stage sintering at 1100°C for 12 h. Transparent ceramic with an average grain size of 1.6 μm and a porosity of 1.3% was obtained. The transparency and dielectric characteristics of the present samples were compared with those of hot-pressed samples: The study of the polarization–field hysteresis loops of the present samples yielded a remanent polarization of 6.8 μC/m2 and a coercive field of 1.6 kV/cm. The low coercive field of PLZT ceramics could potentially reduce the driving voltage of electrooptic devices in many applications.  相似文献   

10.
Spark Plasma Sintering (SPS) of NASICON Ceramics   总被引:1,自引:0,他引:1  
Spark plasma sintering (SPS) method was used to obtain dense NASICON ceramics with a high-electrical conductivity, which was compared with conventional solid-state sintering. The fully dense NASICON was achieved at a relatively low-sintering temperature of 1100°C, whereas the apparent density of the specimen prepared by conventional sintering was 74% of the theoretical density. The highest conductivity of 1.8 × 10−3 Scm−1 at 25°C, which is comparable to the best value reported, was achieved using the SPS process. Considering the phase, density, and microstructure, it appears that there is more room for improved conductivity by controlling the amount of monoclinic zirconia and the resistive grain-boundary glass phase.  相似文献   

11.
SrBi4Ti4O15(SBTi) powders were synthesized by a novel hybrid method of sol–gel and ultrasonic atomization. TiO2 particle was used as a starting material to replace other expensive soluble titanium salts. X-ray diffraction results showed that the pure-phase SBTi powders were obtained at 700°C for 2 h, which is much lower than the calcination temperature (800°–850°C) required in solid-state reactions. The ceramics sintered at 1100°C for 1 h exhibited 94.5% of relative density and a piezoelectric coefficient of 21 pC/N. The results showed that this hybrid method could lead to an attractive method for the industrial fabrication of SBTi materials.  相似文献   

12.
The spark plasma sintering (SPS) technique was used to produce mid-infrared (IR) transparent alumina with the desired transmittance. An excellent transmittance of 85% has been obtained in a sample sintered at 1300°C for 5 min. The heating rate, sintering time, and annealing have a significant influence on IR transmittance. The improvement in transmission may be attributed to the progressive elimination of residual porosity when applying a slower heating rate, longer sintering time during SPS, and postsinter annealing. It is suggested that localized residual strain/stress at grain boundaries and oxygen vacancy concentration are other factors influencing the optical properties of the SPS-sintered alumina.  相似文献   

13.
The microwave dielectric properties and the microstructures of Nd(Zn1/2Ti1/2)O3 (NZT) ceramics prepared by the conventional solid-state route have been studied. The prepared NZT exhibited a mixture of Zn and Ti showing 1:1 order in the B-site. The dielectric constant values (ɛr) saturated at 29.1–31.6. The quality factor ( Q × f ) values of 56 700–170 000 (at 8.5 GHz) can be obtained when the sintering temperatures are in the range of 1300°–1420°C. The temperature coefficient of resonant frequency τf was not sensitive to the sintering temperature. The ɛ r value of 31.6, the Q × f value of 170 000 (at 8.5 GHz), and the τf value of −42 ppm/°C were obtained for NZT ceramics sintering at 1330°C for 4 h. For applications of high selective microwave ceramic resonators, filters, and antennas, NZT is proposed as a suitable material candidate.  相似文献   

14.
The objective of this work was to lower the sintering temperature of K0.5Na0.5NbO3 (KNN) without reducing its piezoelectric properties. The KNN was sintered using 0.5, 1, 2, and 4 mass% of (K, Na)-germanate. The influence of the novel sintering aid, based on alkaline germanate with a melting point near 700°C, on the sintering, density, and piezoelectric properties of KNN is presented. The alkaline-germanate-modified KNN ceramics reach up to 96% of theoretical density at sintering temperatures as low as 1000°C, which is approximately 100°C less than the sintering temperature of pure KNN. The relative dielectric permittivity (ɛ/ɛ0) and losses (tanδ), measured at 10 kHz, the piezo d 33 coefficient, the electromechanical coupling and mechanical quality factors ( k p, k t, Q m) of KNN modified with 1 mass% of alkaline germanate are 397, 0.02, 120 pC/N, 0.40, 0.44, and 77, respectively. These values are comparable to the best values obtained for KNN ceramics sintered above 1100°C.  相似文献   

15.
PLZT electrooptic ceramics were fabricated by a unique atmosphere sintering technique. The ceramics produced were significantly more transparent than those obtained by ordinary O2 sintering methods; in fact, they were comparable in transparency to those obtained by hot-pressing. To achieve good transparency, the powder must be batched with excess PbO, which at the sintering temperature is present as a liquid phase at the grain boundaries. Sintering was conducted at 1200°C for 60 h in an atmosphere containing O2 and a relatively high partial pressure of lead oxide.  相似文献   

16.
The sintering behavior and surface microstructure of PbNi1/3Nb2/3O3–PbTiO3–PbZrO3 (PNiNb-PT-PZ) ceramics were investigated. The PNiNb-PT-PZ ceramics with the stoichiometric composition and the addition of excess lead oxide (PbO-rich ceramics) were sintered by liquid-phase sintering in accordance with the solution-reprecipitation mechanism at temperatures below the melting point of PbO. The temperature at which the liquid phase forms fell to near the eutectic point of the PbO–Nb2O5 and the PbO–TiO2 system (868°C) with the addition of 5 mol% PbO. As the calcination temperature influenced the sinterability of the stoichiometric PNiNb-PT-PZ ceramic, unreacted PbO was considered to be the source of the liquid phase in the sintering of the stoichiometric powder. The secondary phase was observed at the surface of PbO-rich ceramics and was suggested to be a liquid phase expelled from inside the ceramic. A sintering scheme of PNiNb-PT-PZ ceramics was proposed, and the high sinterability of PNiNb-PT-PZ ceramics was attributed to the low formation temperature of the liquid phase.  相似文献   

17.
Nanocrystalline ZnO ceramics with grain sizes of ∼100 nm were prepared by pressureless sintering at 800°C for 2 h and spark plasma sintering (SPS) at 550°C for 2 min, respectively. Excellent green emission properties were obtained in the ZnO ceramic prepared by the SPS process and in the pressureless-sintered ZnO ceramic prepared at 1000°C for 2 h, which are attributed to the vacuum ambience of the SPS process and the sublimeness of the interstitial Zn at >900°C in air, respectively.  相似文献   

18.
The liquid phase sintering of fine BiNbO4 powders allows to obtain dense ceramics with excellent microwave dielectric properties (ɛ=44–46; Q × f =16,500–21,600 GHz) at T ≥700°C. The thermal decomposition of freeze-dried precursors results in the crystallization of a metastable β'-BiNbO4 polymorph that transforms into a stable orthorhombic α-modification at T ≥700°C. The dependence of sinterability on the powder synthesis temperature shows the maximum at 600°C, corresponding to the formation of crystalline BiNbO4 powders with a grain size 80–100 nm. Sintering temperature reduction to 700°C prevents the deterioration of silver contacts during co-firing with BiNbO4 ceramics. In situ scanning electron microscopy observation of the morphological evolution during sintering shows that the intense shrinkage soon after the appearance of a CuO–V2O5 eutectics-based liquid phase is accompanied by complete transformation of the ensemble of primary BiNbO4 particles.  相似文献   

19.
The spark plasma sintering (SPS) technique was used for the first time to fabricate antimony-doped tin oxide (ATO) ceramics from monodispersed ATO nanoparticles synthesized by the hydrothermal method. The ceramics' relative density increased from 83.7% when sintered at 750°C to the highest value of 97.4% at 850°C, and a corresponding highest conductivity of 2.2 × 10−4Ω·cm was also obtained at this temperature.  相似文献   

20.
《Ceramics International》2016,42(3):4221-4227
Spark plasma sintering (SPS) is a powerful technique to produce fine grain dense ferrite at low temperature. This work was undertaken to study the effect of sintering temperature on the densification, microstructures and magnetic properties of magnesium ferrite (MgFe2O4). MgFe2O4 nanoparticles were synthesized via sol–gel self-combustion method. The powders were pressed into pellets which were sintered by spark plasma sintering at 700–900 °C for 5 min under 40 MPa. A densification of 95% of the theoretical density of Mg ferrite was achieved in the spark plasma sintered (SPSed) ceramics. The density, grain size and saturation magnetization of SPSed ceramics were found to increase with an increase in sintering temperature. Infrared (IR) spectra exhibit two important vibration bands of tetrahedral and octahedral metal-oxygen sites. The investigations of microstructures and magnetic properties reveal that the unique sintering mechanism in the SPS process is responsible for the enhancement of magnetic properties of SPSed compacts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号