首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The nucleus of the basal optic root (nBOR) of the accessory optic system is known to be involved in the analysis of the visual consequences of self-motion. Previous studies have shown that the nBOR in pigeons projects bilaterally to the vestibulocerebellum, the inferior olive, the interstitial nucleus of Cajal, and the oculomotor complex and projects unilaterally to the ipsilateral pretectal nucleus lentiformis mesencephali and the contralateral nBOR. By using the anterograde tracer biotinylated dextran amine, we confirmed these projections and found (previously unreported) projections to the nucleus Darkshewitsch, the nucleus ruber, the mesencephalic reticular formation, and the area ventralis of Tsai as well as ipsilateral projections to the central gray, the pontine nuclei, the cerebellar nuclei, the vestibular nuclei, the processus cerebellovestibularis, and the dorsolateral thalamus. In addition to previous studies, which showed a projection to the dorsomedial subdivision of the contralateral oculomotor complex, we found terminal labelling in the ventral and dorsolateral subdivisions. Individual fibers were reconstructed from serial sections, and collaterals to various nuclei were demonstrated. For example, collaterals of fibers projecting to the vestibulocerebellum terminated in the vestibular or cerebellar nuclei; collaterals of fibers to the inferior olive terminated in the pontine nuclei; many individual neurons projected to the interstitial nucleus of Cajal, the nucleus Darkshewitsch, and the central gray and also projected to the nucleus ruber and the mesencephalic reticular formation; collaterals of fibers to the contralateral nucleus of the basal optic root terminated in the mesencephalic reticular formation and/or the area ventralis of Tsai; neurons projecting to the nucleus lentiformis mesencephali also terminated in the dorsolateral thalamus. The consequences of these data for understanding the visual control of eye movements, neck movements, posture, locomotion, and visual perception are discussed.  相似文献   

2.
Isthmic afferent neurons were investigated by the retrograde horseradish peroxidase (HRP) method in a teleost, Navodon modestus. Following HRP injections into the nucleus isthmi, large pyriform neurons are labeled in the ipsilateral optic tectum. Very large and multipolar neurons are also labeled in the ipsilateral nucleus pretectalis. No labeled neurons were found in other areas.  相似文献   

3.
The ventral octavolateral area of lampreys contains three nuclei: the anterior, intermediate and posterior octavomotor nuclei, formed of large neurons that are contacted by thick primary vestibular fibres. We used horseradish peroxidase (HRP) or fluorescein-dextran-amine (FDA) labelling to study the projections of the anterior octavomotor nucleus (AON) in the larval sea lamprey, Petromyzon marinus. The tracers were injected either in the AON, the oculomotor nucleus or the rostralmost spinal cord. HRP injection in the AON labelled thick axons that coursed to the basal mesencephalic tegmentum, where most decussate and project to the oculomotor nucleus and the third Müller cell. Electron microscopy confirmed that AON axons contact with the contralateral third Müller cell and with oculomotor neurons. Some AON axons run in the mesencephalic tegmentum and the ventral diencephalon. An AON axon was observed to run close to the axon of the contralateral third Müller cell, establishing what appeared to be en passant contacts. HRP injection in the AON also revealed commissural fibres projecting to the contralateral octavolateral area. HRP or FDA injections in the oculomotor nucleus labelled both large and small neurons of the AON, mostly contralateral to the injection site, as well as of cells in the intermediate octavomotor nucleus, mainly ipsilateral. HRP injection in the AON or in the rostral spinal cord did not reveal any projections from the AON to the spinal cord. Our results indicate that the pattern of octavo-oculomotor connections in the lamprey is different from that observed in other vertebrates.  相似文献   

4.
In the present study, histochemical techniques combined with more conventional anatomical methods were used to refine the identification of the nucleus of the optic tract and the nuclei of the accessory optic system in the opossum. The distribution of the enzyme cytochrome oxidase (CO) was examined in the cells and the neuropil of the opossum's mesodiencephalic region. Strong CO labeling was present in the nucleus of the optic tract (NOT)-dorsal terminal nucleus (DTN). Alternate sections, taken from animals that had received bilateral injections of horseradish peroxidase centered in the region of the inferior olive, were subjected to assays for CO and horseradish peroxidase. The region occupied by CO-labeled cells in the NOT-DTN superimposed with the one defined by retrogradely labeled cells. Cell counts along the NOT-DTN anteroposterior axis revealed that although the olivary and CO-positive cells were confined within similar boundaries, the latter are up to twofold more numerous than the former. As revealed by cytochrome oxidase histochemistry, the outlines of the NOT-DTN, the other pretectal nuclei and the nuclei belonging to the accessory optic system coincided with those revealed by the histochemistry for nicotinamide dinucleotide phosphate diaphorase (NADPH-d). After an intraocular injection of cholera toxin beta subunit and alternate sections processing for NADPH-d and CO, the distribution of labeled retinal terminal fields in the mesodiencephalic region was shown to be coincident with regions of high levels of histochemical labeling. These results are discussed in the light of previous anatomofunctional assessments of the pretectum and accessory optic system.  相似文献   

5.
After HRP injections into the octopus cell area of the cat cochlear nucleus, only periolivary neurons of the superior olivary complex (SOC) reacted. Elongate neurons in the lateral periolivary nuclei (ipsilateral to the injection) and multipolar neurons in ventromedial periolivary regions (contralateral to the injection) contained granules. No neurons in the main SOC nuclei or higher auditory nuclei reacted, despite a wide range of HRP concentrations. Thus, neurons from the SOC to the octopus cell area of the cochlear nucleus seem to be entirely periolivary and not entirely equivalent to neurons providing collaterals to the olivocochlear bundle.  相似文献   

6.
A direct projection from the retina to the dorsal raphe nucleus at the pontomesencephalic junction was demonstrated with both antero- and retrograde tracing techniques in the rat. Following intravitreous injections of choleratoxin subunit B (CTB), horseradish peroxidase (HRP) and CTB-conjugated HRP, varicose fibers were labeled in the lateral region of the dorsal raphe nucleus, predominantly contralateral to the injection. Many of these labeled fibers were intermingled with serotonin-immunoreactive neurons, but some fibers were also found further laterally, beyond the boundary of dorsal raphe nucleus but within the periaqueductal gray. Following injections of the retrograde tracers Fluoro-Gold and CTB into the dorsal raphe nucleus and adjacent periaqueductal gray (without contamination of previously known targets of retinal projections), a small population of ganglion cells was labeled in the retina. These data provide evidence for the existence of a direct retinal projection to the lateral region of the dorsal raphe nucleus and the adjacent mesopontine periaqueductal gray in the rat. This projection may have a role in sensorimotor coordination and the regulation of circadian rhythm as well as sleep and wakefulness.  相似文献   

7.
The intergeniculate leaflet (IGL), a major constituent of the circadian visual system, is one of 12 retinorecipient nuclei forming a "subcortical visual shell" overlying the diencephalic-mesencephalic border. The present investigation evaluated IGL connections with nuclei of the subcortical visual shell and determined the extent of interconnectivity between these nuclei. Male hamsters received stereotaxic, iontophoretic injections of the retrograde tracer, cholera toxin beta fragment, or the anterograde tracer, Phaseolus vulgaris-leucoagglutin, into nuclei of the pretectum (medial, commissural, posterior, olivary, anterior, nucleus of the optic tract, posterior limitans), into the superior colliculus, or into the visual thalamic nuclei (lateral posterior, dorsal lateral geniculate, intergeniculate leaflet, ventral lateral geniculate). Retrogradely labeled cell bodies identified nuclei with afferents projecting to the site of injection, whereas the presence of anterogradely labeled fibers with terminals revealed brain nuclei targeted by neurons at the site of injection. The IGL projects bilaterally to all nuclei of the visual shell except the lateral posterior and dorsal lateral geniculate nuclei. The IGL also has afferents from the same set of nuclei, except the nucleus of the optic tract. The extensive bilateral efferent projections distinguish IGL from the ventral lateral geniculate nucleus. The superior colliculus, commissural pretectal, olivary pretectal, and posterior pretectal nuclei also project bilaterally to the majority of subcortical visual nuclei. The IGL has a well-established role in circadian rhythm regulation, but there is as yet no known function for it in the larger context of the subcortical visual system, much of which is involved in oculomotor control.  相似文献   

8.
The perireticular nucleus is a recently described thin sheet of small cells among the fibres of the internal capsule, lying lateral to the thalamic reticular nucleus and medial to the globus pallidus (Clemence and Mitrofanis [1992]. J. Comp. Neurol. 322:167-180). During development, the perireticular nucleus is relatively large, lying in the path of the growing corticofugal and thalamocortical axons and filling the area of the internal capsule lateral to the thalamic reticular nucleus. After these axons have formed their connections, the perireticular nucleus rapidly decreases in size, leaving only a few cells in the adult (Mitrofanis [1992] J. Comp. Neurol. 320:161-181). In this study, we aimed to investigate the connections between the developing cortex and thalamus by making injections of tracer into the cortical plate. Injections of Horse Radish Peroxidase (HRP), Wheat Germ Agglutinin bound to HRP (WGA-HRP) and 1'dioctadecyl-3,3,3',3 tetramethycarbocyanine perchlorate (DiI) were made in vivo between embryonic day (E) 18 and adult and DiI was placed in the fixed brains of rats aged between E16 and postnatal day (P)1. Between E17 and P10, the retrograde perikaryal labelling resulting from these injections revealed a transient projection from the perireticular nucleus to the ipsilateral cortical plate. No cells were labelled in the thalamic reticular nucleus. This suggests that the perireticular nucleus must be regarded as a group of cells distinct from the thalamic reticular nucleus and having a separate role in development. Comparisons between the perireticular cells and the cells of the cortical subplate suggest that both may be playing comparable roles in early development, possibly guiding fibres towards their end stations or serving to rearrange the complex mapped projections linking the thalamus and cortex.  相似文献   

9.
Optic axons show a highly stereotypical intracranial course to attain the visual centers of the brainstem. Here we examine the course followed by axons arising from embryonic retinae implanted in neonatal ocular retardation mutant mice in which there had been no prior innervation of the visual centers. Retinae placed on the ventrolateral brainstem adjacent to the normal site of the optic tract send axons dorsolaterally toward the ipsilateral superior colliculus, which they innervate along with a number of other subcortical visual centers. Somewhat unexpectedly, axons also course ventrally to cross at the level of the suprachiasmatic nucleus or, less frequently, caudal to the mammillary body to follow the route of the optic tract and innervate contralateral visual centers. Retinae implanted along the course of the internal capsule emit axons that follow projection fibers through the striatum to innervate the lateral geniculate nucleus and other optic nuclei. These grafts also appear to project to the lateral part of the ventrobasal nucleus of the thalamus. The results show that prior existence of an optic projection is not necessary for axons derived from ectopic retinae to attain visual nuclei, not only on the side of implantation but also on the contralateral side of the brain. The cues that these growing axons follow appear to be stable temporally. The fact that axons can also follow highly anomalous routes, such as through the internal capsule, to attain target nuclei in the brainstem suggests that the normal optic pathway is not an obligatory route for optic outgrowth.  相似文献   

10.
The ascending projections of the optic tectum, including their cells of origin, have been studied in the lizard Podarcis hispanica by means of a two-step experimental procedure. First, tracers were injected in the tectum to study the anterograde labeling in the forebrain. Second, the cells of origin of these projections have been identified by analyzing the retrograde labeling after tracer injections in the thalamus, hypothalamus, and pretectum. Three main tectal ascending pathways have been described: the dorsal tecto-thalamic tract (dtt), the medial tecto-thalamic tract (mtt), and the ventral tecto-thalamic tract (vtt). The dtt originates in radial cells of layers 5 and 7 and bipolar cells of layers 8 and 10 that project to the lateral neuropile of the dorsal lateral geniculate nucleus (GLD), to the intergeniculate leaflet (IGL), and to the ventral lateral geniculate nucleus (GLV). The mtt arises from radial neurons of layers 3 and 5 and bilaterally reaches the putative reticular thalamus and its boundary with the hypothalamus, the rostral IGL, and the area triangularis (AT). The vtt is composed of fibers from ganglion and multipolar cells of the layer 7 that project bilaterally to the nucleus of the vtt, the ventrolateral thalamic nucleus, the medial posterior thalamic nucleus (MP), the nucleus rotundus (Rot), the IGL, and the cell plate of the GLD. Therefore, the GLD receives not only direct retinal afferents but also two different tectal inputs, thus constituting a convergence point in the two visual pathways to the telencephalon. Moreover, different tectal cells specifically project to the ventrolateral thalamus and to pretectal nuclei. These results are discussed from comparative and functional viewpoints.  相似文献   

11.
The retinal ganglion cells giving rise to retinohypothalamic projections in the rat were identified using retrograde transport of horseradish peroxidase (HRP) or FluoroGold injected into the suprachiasmatic nucleus (SCN), and using transneuronal transport of the Bartha strain of the swine herpesvirus (PRV-Bartha). When PRV-Bartha is injected into one eye, it is taken up by retinal ganglion cells, replicated, transported to axon terminals in the SCN, and released. There the virus may take one, or both, of two paths to retinal ganglion cells in the contralateral eye: 1) uptake by SCN neurons, replication, and release from the neurons with uptake and retrograde transport in retinal afferents originating in the contralateral retina; 2) transneuronal passage through axo-axonic appositions between retinal afferents in the SCN with subsequent retrograde transport of virus to the contralateral retina. The ganglion cells thus labeled are a homogeneous population of small neurons (mean diameter, 12.8 +/- 2.2 microns and mean area, 81.8 +/- 21.8 microns 2) with sparsely branching dendrites that are widely distributed over the retina. This population is best identified when virus labeling of retinal projections in areas beyond the hypothalamus is eliminated by lateral geniculate lesions that transect the optic tract at its entry into the geniculate complex. The same population is labeled with retrograde tracers but, with both HRP and FluoroGold, other ganglion cells are labeled, presumably from uptake by fibers of passage, indicating that the virus is a more reliable marker for ganglion cells giving rise to retinohypothalamic projections. The ganglion cells identified correspond to a subset of type III, or W, cells.  相似文献   

12.
The hamster accessory optic fiber system has been investigated with the use of de Olmos-Ingram and Fink-Heimer silver methods following the production of unilateral ocular enucleation. It was found that this fiber system consists of both crossed and uncrossed inferior and superior fasciculi. The fibers of the inferior fasciculus (anterior accessory optic tract) run along the medial edge of the cerebral peduncle and terminate within the medial terminal nucleus of the accessory optic system. The fibers of the superior fasciculus (posterior accessory optic tract) leave the main optic tract, pass superficially over the medial geniculate nucleus and the cerebral peduncle; they synapse within the dorsal, the lateral and the medial terminal accessory optic nuclei. The presence of a retinohypothalamic tract could not be confirmed.  相似文献   

13.
The existence of an infrared sensory neuron group with ascending fibers which directly reach the optic tectum in Crotaline snakes was confirmed with three methods. (1) With the retrograde horseradish peroxidase (HRP) method, labeled neurons were not found within the nucleus descendens lateralis nervi trigemini (DLV), but in an unnamed cell group located immediately ventral to the DLV of the contralateral side at the transitional portion between the nucleus oralis (DVo) and the nucleus interpolaris (DVi). This unnamed cell group, which was seen only in the Crotalinae, was provisionally called the 'new nucleus'. (2) Normal brain series of 15 species were stained by the methods of Bodian-Otsuka, Klüver-Barrera and Nissl staining to compare the cytoarchitecture of the medulla oblongata. The 'new nucleus' was found only in species belonging to the Crotalinae. This nucleus was situated in fiber tracts which appeared to correspond to the lemniscus spinalis and tractus spino-cerebellaris of the reptilian medulla oblongata, and contained medium-sized multipolar or fusiform neurons. (3) In an electrophysiological study 16 single units responding unimodally to an infrared stimulus were recorded. Three of these recording sites were determined with Pontamine sky blue marking to be near or within the 'new nucleus'.  相似文献   

14.
The receptive field properties of neurons in the medial terminal nucleus of the accessory optic system (MTN) that project to the ipsilateral nucleus of the optic tract (NOT) and dorsal terminal nucleus (DTN), as identified by antidromic electrical activation, were analysed in the anaesthetized rat. The great majority (88%) of MTN neurons that were antidromically activated from NOT and DTN preferred downward directed movement of large visual stimuli while the remaining cells preferred upward directed stimulus movement. Distinct retrograde tracer injections into the NOT/DTN and the ipsilateral inferior olive (IO) revealed that no MTN neurons project to both targets. MTN neurons projecting to the ipsilateral NOT/DTN were predominantly found in the ventral part of the MTN, whereas those projecting to the IO were found in the dorsal part of the MTN. In situ hybridization for glutamic acid decarboxylase (GAD) mRNA was used as a marker for GABAergic neurons. Up to 98% of MTN neurons retrogradely labelled from the ipsilateral NOT/DTN also expressed GAD mRNA. Earlier studies have shown that MTN neurons that prefer upward directed stimulus movements are segregated from MTN neurons that prefer downward directed stimulus movements. It also has been demonstrated that directionally selective neurons in the NOT/DTN prefer horizontal stimulus movements and receive an inhibitory input from ipsilateral MTN. Our results indicate that this input is mediated by GABAergic cells in the ventral part of MTN, which to a large extent prefer downward directed stimulus movements, and that the great majority of MTN neurons that prefer upward directed stimulus movements project to other targets one of which possibly is the IO.  相似文献   

15.
The dorsal lateral geniculate nucleus of the thalamus transmits visual signals from the retina to the cortex. Within the lateral geniculate nucleus, the ascending visual signals are modified by the actions of a number of afferent pathways. One such projection originates in the pretectum and appears to be active in association with oculomotor activity. Much remains unknown about the pretectal-geniculate projection. Our purpose was to examine for the first time individual axon arbors from the pretectum that project to the lateral geniculate nucleus, describing their topography and nuclear and laminar targets. We made injections of the anterograde tracer Phaseolus vulgaris leucoagglutinin into the cat pretectum, targeting the nucleus of the optic tract. Serial 40 microns coronal sections were processed by using immunohistochemistry to reveal labeled axons that were then serially reconstructed using light microscopy. Pretectal-geniculate axons appeared morphologically heterogeneous in terms of swelling size, branching patterns, and laminar target. Most axons innervated the geniculate A laminae. A separate, smaller population innervated the C laminae. All axons exhibited substantially greater spread medial-laterally than rostral-caudally in the lateral geniculate nucleus, displaying a topographical organization for visual field elevation, but not azimuth. Many pretectal axons that projected to the LGN also innervated adjacent structures, including the medial interlaminar nucleus, the perigeniculate nucleus, and/or the pulvinar. These results indicate that the projection from the pretectum to the dorsal lateral geniculate nucleus is heterogeneous, is semitopographical, and may coordinate neural activity in the lateral geniculate nucleus and in neighboring visual thalamic structures in association with oculomotor events.  相似文献   

16.
The projections to physiologically defined tonotopic regions of the central nucleus of the inferior colliculus (ICC) from the adult rat's superior olivary complex (SOC) and lateral lemniscus were investigated using retrograde tract tracing methods. Iontophoretic injections of the retrograde tracers, Fluoro-Gold (FG) or horseradish peroxidase (HRP), were made into the ICC through a glass micropipette, which also served as a recording electrode to determine the frequency response at the injection site. Injections were made into frequency-specific regions based on the best responses of neurons to contralaterally presented tones between 2 25 kHz. In the dorsal nucleus of the lateral lemniscus (DNLL) neurons were labeled both ipsilaterally and contralaterally to the injection site with a larger proportion projecting to the contralateral side. The distribution of labeled cells was concentric, with high frequencies represented along the outer margin and low frequencies represented centrally within DNLL. The lateral superior olive (LSO) was labeled bilaterally, with high frequencies represented medially and low frequencies laterally along the nuclear axis. The projection from the medial superior olive (MSO) was ipsilateral, with high frequencies represented ventrally and low frequencies dorsally. The projection from the superior paraolivary nucleus (SPN) was also largely ipsilateral, with high frequencies represented medially and low frequencies laterally. The intermediate and ventral nuclei of the lateral lemniscus (INLL and VNLL) were also labeled ipsilaterally and exhibited a distribution of tracer that depended on the frequency of the injection site: the low frequency projection was banded but the high frequency projection was more evenly distributed.  相似文献   

17.
We characterized a subset of leech sensory afferents, the photoreceptors, in terms of their molecular composition, anatomical distribution, and candidate postsynaptic partners. For reagents, we used an antiserum generated against purified LL35, a 35 kD leech lactose-binding protein (galectin); monoclonal antibody (mAb) Lan3-2, which is specific for a mannose-containing epitope common to the full set of sensory afferents; and dye injections. Photoreceptors differ from other types of sensory afferents by their abundant expression of galectin. However, photoreceptors share in common with other sensory modalities the mannose-containing epitope recognized by mAb Lan3-2. Photoreceptors from a given segment project their axons directly into the CNS ganglion innervating the same segment. They assemble in a target region, the optic neuropil, which is separate from the target regions of other sensory modalities. They also extend their axons as an optic tract into the connective to innervate optic neuropils of other CNS ganglia, thereby providing extensive intersegmental innervation for the 33 CNS ganglia comprising the leech nerve cord. Because of its intimate contact with the optic neuropil, a central neuron, the AP effector cell, is a strong candidate second order visual neuron. In confocal images, the AP cell projects its primary axon for about 100 microns alongside the optic neuropil. In electron micrographs, spines emanating from the axon of the AP cell make contact with vesicle laden nerve terminals of photoreceptors. Leech photoreceptors and their second order visual neurons represent a simple visual system for studying the mechanisms of axonal targeting.  相似文献   

18.
The dendrites of ganglion cells initially ramify throughout the inner plexiform layer of the developing retina before becoming stratified into ON or OFF sublaminae. This ontogenetic event is thought to depend on glutamate-mediated afferent activity, because treating the developing retina with the glutamate analog 2-amino-4-phosphonobutyrate (APB), which hyperpolarizes ON cone bipolar cells and rod bipolar cells, thereby preventing their release of glutamate, effectively arrests the dendritic stratification process. To assess the functional consequences of this manipulation, extracellular recordings were made from single cells in the A laminae of the dorsal lateral geniculate nucleus and from the optic tract in mature cats that had received intraocular injections of APB during the first postnatal month. Such recordings revealed that stimulation of the APB-treated eye evoked both ON as well as OFF discharges in 37% of the cells tested. (As expected, when the normal eye was activated, virtually all cells yielded only ON or OFF responses.) The proportion of ON-OFF cells found here corresponds closely to the incidence of multistratified dendrites observed previously in anatomical studies of APB-treated cat retinas. This suggests that the ganglion cells with multistratified dendrites receive functional inputs from ON as well as OFF cone bipolar cells. This interpretation is further supported by the finding that the proportion of ON-OFF cells was very similar in the geniculate layer innervated by the treated eye and in the optic tract. The cells activated by the APB-treated eye were also found not to show response suppression when flashing stimuli of increasing size were used. This suggests that exposing the developing retina to APB perturbs the neural circuitry mediating the antagonistic center-surround organization found in normal receptive fields. The functional changes evident after treating the developing retina with APB suggest that it should now be feasible to assess how the segregation of ON and OFF retinal pathways relates to organizational features at higher levels of the visual system, such as orientation selectivity in cortical cells.  相似文献   

19.
Axonal connections between the amygdala and the hypothalamic paraventricular nucleus were examined by combined anterograde-retrograde tract tracing. Iontophoretic injections of the retrograde tracer Fluorogold were placed in the paraventricular nucleus, and the anterograde tracer PHA-L in the ipsilateral central or medial amygdaloid nuclei. Single and double-label immunohistochemistry were used to detect tracers. Single label anterograde and retrograde tracing suggest limited evidence for direct connections between the central or medial amygdala and the paraventricular nucleus. In general, scattered PHA-L-positive terminals were seen in autonomic subdivisions of the paraventricular nucleus (lateral parvocellular, dorsal parvocellular and ventral medial parvocellular subnuclei) following central or medial amygdaloid nucleus injection. Double-label studies indicate that central and medial amygdaloid nucleus efferents contact paraventricular nucleus-projecting cells in several forebrain nuclei. In the case of central nucleus injections, PHA-L positive fibers occasionally contacted Fluorogold-labeled neurons in the anteromedial, ventromedial and preoptic subnuclei of the bed nucleus of the stria terminalis. Overall, such contacts were quite rare, and did not occur in the bed nucleus of the stria terminalis regions showing greatest innervation by the central amygdaloid nucleus. In contrast, medial amygdala injections resulted in a significantly greater overlap of PHA-L labeling and Fluorogold-labeled neurons, with axosomatic appositions observed in medial divisions of the bed nucleus of the stria terminalis, anterior hypothalamic area and preoptic area. The results provide anatomical evidence that a substantial proportion of amygdaloid connections with hypophysiotrophic paraventricular nucleus neurons are likely multisynaptic, relaying in different subregions of the bed nucleus of the stria terminalis and hypothalamus.  相似文献   

20.
We have examined several components of the human visual system to determine how the dimensions of the optic tract, lateral geniculate nucleus (LGN), and primary visual cortex (V1) vary within the same brain. Measurements were made of the cross-sectional area of the optic tract, the volumes of the magnocellular and parvocellular layers of the LGN, and the surface area and volume of V1 in one or both cerebral hemispheres of 15 neurologically normal human brains obtained at autopsy. Consistent with previous observations, there was a two- to threefold variation in the size of each of these visual components among the individuals studied. Importantly, this variation was coordinated within the visual system of any one individual. That is, a relatively large V1 was associated with a commensurately large LGN and optic tract, whereas a relatively small V1 was associated with a commensurately smaller LGN and optic tract. This relationship among the components of the human visual system indicates that the development of its different parts is interdependent. Such coordinated variation should generate substantial differences in visual ability among humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号