首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Advanced high-strength steels (AHSS) have a better combination between strength and ductility than conventional HSS, and higher crash resistances are obtained in concomitance with weight reduction of car structural components. These steels have been developed in the last few decades, and their use is rapidly increasing. Notwithstanding, some of their important features have to be still understood and studied in order to completely characterize their service behavior. In particular, the high mechanical resistance of AHSS makes hydrogen-related problems a great concern for this steel grade. This article investigates the hydrogen embrittlement (HE) of four AHSS steels. The behavior of one transformation induced plasticity (TRIP), two martensitic with different strength levels, and one hot-stamping steels has been studied using slow strain rate tensile (SSRT) tests on electrochemically hydrogenated notched samples. The embrittlement susceptibility of these AHSS steels has been correlated mainly to their strength level and to their microstructural features. Finally, the hydrogen critical concentrations for HE, established by SSRT tests, have been compared to hydrogen contents absorbed during the painting process of a body in white (BIW) structure, experimentally determined during a real cycle in an industrial plant.  相似文献   

2.
Metallurgical and Materials Transactions B - Samples taken from laboratory-produced 3rd generation advanced high-strength steels, solidified at a low cooling rate, have been investigated to study...  相似文献   

3.
4.
The key evidence for understanding the mechanical behavior of advanced high strength steels was provided by atom probe tomography (APT). Chemical overstabilization of retained austenite (RA) leading to the limited transformation-induced plasticity (TRIP) effect was deemed to be the main factor responsible for the low ductility of nanostructured bainitic steel. Appearance of the yield point on the stress-strain curve of prestrained and bake-hardened transformation-induced plasticity steel is due to the unlocking from weak carbon atmospheres of newly formed during prestraining dislocations.  相似文献   

5.
6.
7.
The combined thermodynamic‐micromechanical model of Fischer [1] is applied to a low‐alloyed TRIP steel with a volume fraction of 16% of retained austenite. The model is implemented in a finite element code. The mesh consists of 9 by 9 by 9 cubical elements, each representing a single grain with a random crystallographic orientation. The retained austenite grains are randomly dispersed through the entire mesh. The extent of the martensitic transformation in all austenite grains is calculated. A large spread in transformation rate is observed. The most favourably oriented grains reach a full martensitic structure, while the martensite volume fraction of less favourably oriented grains is less than 50%. When the chemical driving force is more negative, the onset of the transformation is delayed and the increase of the martensite volume fraction is slower. The calculated results are compared with experimentally obtained values. Although in general a reasonable agreement is found, Fischer's approach leads to some discrepancies with experimental observations.  相似文献   

8.
The microstructure of transformation induced plasticity (TRIP) and dual phase (DP) multiphase steels after stamping of an industrial component at different strain levels was investigated using transmission electron microscopy. The TRIP steel microstructure showed a more complex dislocation substructure of ferrite at different strain levels than DP steel. The deformation microstructure of the stamped parts was compared to the deformation microstructure in these complex steels for different “equivalent” tensile strains. It was found that the microstructures are similar only at high levels of strain (>10 pct) for both steels.  相似文献   

9.
10.
Industrial processing of low‐alloy Transformation Induced Plasticity (TRIP) steels involves various stages of heat‐treating, such as Intercritical Annealing (IA) and Bainitic Isothermal Treatment (BIT), in order to produce a dispersion of retained austenite (γR) particles and bainite (αB) in a ferritic matrix (α). Retained austenite then transforms to martensite (α′) during forming processes undergone by the steel. In the present work an effort was made to model these stages of processing, i.e. IA, BIT and the γR→α′ strain‐induced transformation. Simulation of heat‐treatment stages was implemented using computational kinetics methods. Investigation of the strain‐induced gMR→α′ transformation kinetics was performed by means of a simple analytical model. Simulation of IA and comparison with available experimental data showed that the amount of austenite (γ) forming during IA reaches the values predicted by thermodynamic equilibrium only at high annealing temperatures (>825°C). It was also observed that kinetic and thermodynamic predictions set a lower and an upper limit, respectively, within which the actual amount of austenite experimentally observed is contained. Results from the simulation of the BIT indicated considerable carbon enrichment, and thus stabilization of γR, in agreement with recent experimental observations. As regards the strain‐induced gMR→α′ transformation, the analytical model employed in the present work was fitted to available experimental results, showing reasonably good adaptation to the kinetic behaviour of the microstructure during plastic deformation.  相似文献   

11.
A constitutive model that describes the mechanical behaviour of steels exhibiting “Transformation Induced Plasticity” (TRIP) during martensitic transformation is presented. Multiphase TRIP steels are considered as composite materials with a ferritic matrix containing bainite and retained austenite, which gradually transforms into martensite. The effective properties and overall behaviour of TRIP steels are determined by using homogenization techniques for non‐linear composites. The developed constitutive model considers the different hardening behaviour of the individual phases and estimates the apportionment of plastic strain and stress between the individual phases of the composite. A methodology for the numerical integration of the resulting elastoplastic constitutive equations in the context of the finite element method is developed and the constitutive model is implemented in a general‐purpose finite element program. The prediction of the model in uniaxial tension agrees well with the experimental data. The problem of necking of a bar in uniaxial tension is studied in detail.  相似文献   

12.

Eight medium manganese steels ranging from 10 to 15 wt pct Mn have been produced with varying levels of aluminum, silicon, and carbon to create steels with varying TRIP (transformation-induced plasticity) character. Alloy chemistries were formulated to produce a range of intrinsic stacking fault energies (ISFE) from − 2.2 to 13.3 mJ/m2 when calculated at room temperature for an austenitic microstructure having the nominal alloy composition. Two-stage TRIP behavior was documented when the ISFE of the γ-austenite phase was 10.5 mJ/m2 or less, whereas an ISFE of 11.9 mJ/m2 or greater exhibited TWIP (twin-induced plasticity) with single-stage TRIP to form α-martensite. Properties were measured in both hot band (hot rolled) and batch annealed (hot rolled, cold rolled, and annealed) conditions. Hot band properties were influenced by the Si/Al ratio and this dependence was related to incomplete recovery during hot working for alloys with Si/Al ratios greater than one. Batch annealing was conducted at 873 K (600 °C) for 20 hours to produce ultrafine-grained microstructures with mean free slip distances less than 1 μm. Batch-annealed materials were found to exhibit a Hall–Petch dependence of the yield strength upon the mean free slip distance measured in the polyphase microstructure. Ultimate tensile strengths ranged from 1450 to 1060 MPa with total elongations of 27 to 43 pct. Tensile ductility was shown to be proportional to the sum of the products of volume fraction transformed times the volume change associated for each martensitic transformation. An empirical relationship based upon the nominal chemistry was derived for the ultimate tensile strength and elongation to failure for these batch-annealed steels. Two additional alloys were produced based upon the developed understanding of these two-stage TRIP steels and tensile strengths of 1150 MPa with 58 pct total elongation and 1400 MPa and 32 pct ductility were achieved.

  相似文献   

13.
高强度螺栓钢的开发与应用   总被引:4,自引:0,他引:4  
祖荣祥 《特殊钢》1995,16(5):1-7
文中介绍了低合金钢、含硼钢和非调质钢等螺栓钢的性能和应用,以及近期高强度螺栓钢的开发。  相似文献   

14.
The structure and the mechanical properties of the high-strength structural martensitic steels used in manufacturing the mechanism parts subjected to significant cyclic dynamical loads are considered. All the steels have a similar martensitic–bainite structure and a high stability of their mechanical properties. At the same time, their structures are found to contain secondary phases, which can degrade their functional properties. 03Kh11N10M2T maraging steel exhibits fairly high impact toughness for this class of steels despite a brittle character of fracture during bending impact tests.  相似文献   

15.
Austempering of Hot Rolled SiMn TRIP Steels   总被引:1,自引:1,他引:1  
 The austempering after hot rolling in hot rolled Si Mn TRIP (transformation induced plasticity) steels was investigated. The mechanism of TRIP was discussed through examination of the microstructure and the mechanical properties of this kind of steel. The results showed that the strain induced transformation to martensite of retained austenite occurs in hot rolled Si Mn TRIP steels. The sample exhibited a good combination of ultimate tensile strength and total elongation when it was held at the bainite transformation temperature after hot deformation. The stability of retained austenite increases with an increase in isothermal holding time, and a further increase in the holding duration resulted in the decrease of stability. The mechanical properties were optimal when holding for 25 min, and tensile strength and total elongation reached the maximum values (774 MPa and 33%, respectively).  相似文献   

16.
Development of New High-Strength Carbide-Free Bainitic Steels   总被引:1,自引:0,他引:1  
An attempt was made to optimize the mechanical properties by tailoring the process parameters for two newly developed high-strength carbide-free bainitic steels with the nominal compositions of 0.47 pct C, 1.22 pct Si, 1.07 pct Mn, 0.7 pct Cr (S1), and 0.30 pct C, 1.76 pct Si, 1.57 pct Mn, and 0.144 pct Cr (S2) (wt pct), respectively. Heat treatment was carried out via two different routes: (1) isothermal transformation and (2) quenching followed by isothermal tempering. The results for the two different processes were compared. The bainitic steels developed by isothermal heat treatment were found to show better mechanical properties than those of the quenched and subsequently tempered ones. The effect of the fraction of the phases, influence of the transformation temperatures, the holding time, and the stability of retained austenite on the mechanical properties of these two steels was critically analyzed with the help of X-ray diffraction, optical metallography, scanning electron microscopy, and atomic force microscopy. Finally, a remarkable combination of yield strength of the level of 1557 MPa with a total elongation of 15.5 pct was obtained.  相似文献   

17.
Multiphase TRIP steels are a relatively new class of steels exhibiting excellent combinations of strength and cold formability, a fact that renders them particularly attractive for automotive applications. The present work reports models regarding the prediction of the stability of retained austenite, the optimisation of the heat‐treatment stages necessary for austenite stabilization in the microstructure, as well as the mechanical behaviour of these steels under deformation. Austenite stability against mechanically‐induced transformation to martensite depends on chemical composition, austenite particle size, strength of the matrix and stress state. The stability of retained austenite is characterized by the MσS temperature, which can be expressed as a function of the aforementioned parameters by an appropriate model presented in this work. Besides stability, the mechanical behaviour of TRIP steels also depends on the amount of retained austenite present in the microstructure. This amount is determined by the combinations of temperature and temporal duration of the heat‐treatment stages undergone by the steel. Maximum amounts of retained austenite require optimisation of the heat‐treatment conditions. A physical model is presented in this work, which is based on the interactions between bainite and austenite during the heat‐treatment of multiphase TRIP steels, and which allows for the selection of treatment conditions leading to the maximization of retained austenite in the final microstructure. Finally, a constitutive micromechanical model is presented, which describes the mechanical behaviour of multiphase TRIP steels under deformation, taking into account the different plastic behaviour of the individual phases, as well as the evolution of the microstructure itself during plastic deformation. This constitutive micromechanical model is subsequently used for the calculation of forming limit diagrams (FLD) for these complex steels, an issue of great practical importance for the optimisation of stretch‐forming and deep‐drawing operations.  相似文献   

18.
TRIP钢中合金元素的作用和处理工艺的研究进展   总被引:2,自引:0,他引:2  
 为了给TRIP钢的试制提供参考,对各种合金元素在TRIP钢中的作用进行了描述,并介绍了热轧和冷轧TRIP钢的处理工艺。认为TRIP钢的研究、生产、应用与双相钢相似,能生产双相钢的生产线即可生产TRIP钢。为生产符合我国国情的TRIP钢,应加强微合金元素钒、钛在TRIP钢中作用的基础研究。  相似文献   

19.
20.
After research and development for decades,low-alloy high-strength steels have been widely used and playing an important role in economy.This article introduces,from the perspective of environmental protection,the Baosteel’s latest progress of low-alloy high-strength steels continuously innovated with the focus of achieving high-strength,high-toughness,long service life and versatile functions,and with the aim of providing energy-saving and pollution-reduction solutions to down-stream sectors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号