共查询到19条相似文献,搜索用时 31 毫秒
1.
浮选泡沫的结构和运动决定着夹带集到精矿中的脉石数量,尽管这一现象对总的工艺指标起着重要的作用,但现阶段对泡沫的性状仍然了解得不够,至今为止,已建立出的多数用以说明夹带过程的模型都是经验模型。本文介绍了一种有重要参考意义的理论模型,并试图利用这一模型更好地了解夹带现象,这种通用的泡沫模型器(UMIST Froth-Sim)可以模拟很宽范围的浮选条件,因为它考虑到了出现出浮泡沫中的许多物理现象,该模型首先要根据重力,黏滞力和毛细效应描述气体的运动,气泡的兼并和水的运动。根据疏水性,颗粒粒度和密度区分不同固体着型之间的固体运动,并建立包括几何普拉特奥边界(Plateau bordey)的扩散,颗粒沉降和水运动等效应的模型,本文的目的是要证明,这一模型在解释试验观测到的脉石矿物的夹带和捕收现象的应用中的可能性。这是通过对比模型预测的脉石回收率和试验观测到的脉石回收率与水回收率之间关系实现的。 相似文献
2.
为更好地揭示并合理利用浮选过程中细粒脉石的泡沫夹带与充气量的内在联系,采用自制的泡沫特性测试系统,模拟了浮选中充气量对泡沫的特性及脉石的泡沫夹带行为的影响规律。结果表明:在两相体系中,充气量的增大会明显降低泡沫层中气泡的兼并速度,增大泡沫的含液率及泡沫柱表观液流速度,显著提高泡沫水回收速率;在三相体系中,充气量的增大会显著降低泡沫中脉石的回流速度,显著提高顶部泡沫层的脉石质量分数。因此,在浮选过程中,在保证精矿有效回收的前提下,控制充气量是有效控制精矿泡沫夹带脉石的有效手段。 相似文献
3.
泡沫相(层)是浮选重要组成部分之一,决定了最终精矿品位和整体浮选效率。由于泡沫相中的气泡与颗粒的相互作用比较复杂,近些年国内外学者围绕浮选泡沫层开展了大量相关研究。本综述在介绍浮选泡沫的结构和性质后归纳了浮选泡沫失稳的机理,即排液、粗化和兼并在现阶段的研究进展。对颗粒强化泡沫稳定性的相关机理进行了分析和总结,且归纳出颗粒疏水性、粒度和形状是颗粒影响泡沫层稳定的主要因素。之后回顾了泡沫层中常见的泡沫夹带现象,分析总结了泡沫夹带的三个主要机理;颗粒物理性质、水回收率、湍流强度、矿浆浓度、泡沫层性质和表观气速是影响泡沫夹带的主要因素;夹带模型的建立对脉石夹带程度的有效预测以及浮选工艺流程的优化具有重要意义。最后提出在今后的研究中加强泡沫相流体力学研究和推进泡沫层颗粒追踪技术是浮选泡沫相研究的方向之一。 相似文献
4.
浮选过程中高岭石夹带行为研究 总被引:1,自引:0,他引:1
为了探索浮选过程中高岭石的夹带规律,通过设计高岭石单矿物浮选试验,研究了高岭石粒度、矿浆质量浓度、起泡剂用量和捕收剂用量对浮选过程中高岭石回收率、水回收率和高岭石夹带率的影响。研究发现:高岭石的粒度与起泡剂仲辛醇的用量是影响高岭石夹带行为的主要因素,高岭石粒度越小,起泡剂用量越大,高岭石的夹带率就越大;矿浆中高岭石的质量浓度对高岭石的夹带率影响不大,随着高岭石质量浓度的增大,其夹带率基本保持不变,只会增大水回收率;随着捕收剂煤油用量的增大,高岭石回收率的增加并不明显。 相似文献
5.
6.
煤泥浮选过程中的细泥夹带与罩盖机理 总被引:2,自引:0,他引:2
选用开滦矿区钱家营矿的高灰难选煤泥和大同塔山选煤厂煤系高岭石,通过单矿物和混合矿物浮选试验研究了影响高灰细泥夹带和罩盖的主要因素。研究发现:影响高灰细泥夹带的主要因素为细泥粒度、起泡剂用量和矿浆浓度,捕收剂用量对其影响较小;矿浆pH值接近8时,可燃体回收率最大。EDLVO理论计算发现:微细粒的高岭石与煤粒间存在着“能垒”,当颗粒间距约为30 nm时,“能垒”达到最大值;高岭石的粒度越细,“能垒”越低。外界能量输入可以打破“能垒”,使细泥颗粒发生罩盖。试验表明:强烈的机械搅拌使混合煤样的精煤产率和可燃体回收率分别降低10.87%和13.16%。 相似文献
8.
9.
10.
11.
为更好地揭示并合理利用浮选过程中无机盐对浮选泡沫特性的影响,采用自制的泡沫特性测试系统,通过对两相泡沫不同高度处泡沫的静压强、气泡直径、泡沫柱的溢流流量进行测定,深入研究了无机盐对泡沫特性参数的影响规律.结果表明:在两相体系中,NaCl、Na2SO4、MgSO4及AlCl3这四种无机盐可显著减小各泡沫层高度下的气泡直径,增大泡沫含液率以及泡沫柱表观溢流速度,从而增大微细粒亲水脉石的泡沫夹带,而NaClO3的添加对泡沫特性参数均无显著影响. 相似文献
12.
Modelling flotation with a flexible approach – Integrating different models to the compartment model
In this work, a comprehensive model structure for froth flotation is developed by linking the compartment model (Savassi, 2005) to a set of phenomenological models describing the froth recovery, the water recovery and the entrainment factor. This model structure is successfully calibrated against experimental data from a pilot plant campaign with a copper ore. 相似文献
13.
泡沫浮选是一种重要的选矿方法,不同表面物理化学性质的矿物颗粒在药剂的作用下借助浮选机实现分离。浮选机的控制变量包括充气量、泡沫层厚度和药剂添加量等。泡沫层厚度是影响浮选指标的一个重要控制参数,同样,泡沫层厚度的准确测量也至关重要。传统的泡沫层厚度测量方式一般是采用传感器等装置来实现的,由于这些传感器往往需要与矿浆直接接触,所以有时会因机械故障或信号干扰而造成测量值的误差。针对传统测量手段存在的问题,本文提出了一种浮选泡沫层厚度的软测量方法。运用极限树回归ETR方法,以浮选过程中原矿品位、入料流量、入料浓度、入料粒度、充气量、泡沫稳定度和泡沫移动速度为输入变量,建立预测模型,实现了浮选泡沫层厚度的有效预测。 相似文献
14.
We conducted an experimental study to investigate the behaviour of hydrophobic particles in the froth phase of a laboratory column. A stable froth was formed by passing the air through a porous disk into the liquid containing frother. Individual bubbles were loaded with hydrophobic particles separately in a fluidised bed and allowed to rise into the froth layer. Particles dislodged from the froth were collected and measured. The effect of collector concentration and superficial gas velocity on the detachment of particles from the froth was studied. The results showed that fraction of particles detaching from the froth decreases exponentially with increase in the collector concentration and increases slightly with superficial gas velocity. In general, low froth dropback values were obtained for the conditions studied in the present system which are considerably lower than the previously reported values. 相似文献
15.
三相泡沫的稳定性及温度的影响 总被引:2,自引:0,他引:2
由粉煤灰或黄泥、氮气或空气和水以及研制的专用发泡剂组成的三相泡沫是一种新型高效的矿井防灭火材料。对二相泡沫破灭机制、脱水破灭过程及其稳定性进行了较系统的阐述和分析;研究了外界温度对三相泡沫稳定性的影响。结果表明:三相泡沫在常温下脱水速度慢,稳定时问较长;发泡倍数越高,稳定性越低;随着温度的升高,稳定性降低,当温度超过80℃后,稳定时间大幅下降。 相似文献
16.
The froth phase serves an important role in upgrading the final concentrate in flotation. At present, the techniques that are used in the mineral industry to determine the effect of froth phase on the metallurgical performance of plant scale flotation cells have limitations.The aim of this paper is to investigate the performance of the froth in an industrial flotation cell. A unique device has been developed which is able to decouple the froth zone from the pulp zone. The device consists of two concentric tubes. The inner tube acts as a dropback collection chamber or catcher. The particles that return from the froth phase fall directly into the catcher and are collected as froth dropback. This technique is capable of measuring plant scale flotation cell froth recovery as well as providing valuable information on froth dropback particles.The froth recovery measurements were carried out in a rougher bank of a copper concentrator treating sulphide minerals. The dropback device is designed so that it can be immersed into an industrial size flotation cell and plant froth recovery measurements can be taken at any given location. During the experiments, the bubbles laden with valuable mineral particles entered the device from the flotation cell, subsequently rising to form a froth layer at the top of the device. The particles that detached or drained from the froth zone were collected in the dropback collection chamber whereas the concentrate sample was collected through a launder. By sizing and chemical analysis of the concentrate and dropback samples, the froth recovery was estimated on the basis of the valuable component. The effect of air rate on the froth recovery was also investigated. Metallurgical grades of the froth dropback device samples for different particle size ranges were compared to those of the concentrator to better understand the froth dropback mechanism. 相似文献
17.
18.
19.
A study of the froth bubble transport in a two-dimensional (2D) flotation cell was performed. Experiments were developed as a 2 × 2 factorial design, in which the effect of superficial air rate (1.2–1.8 cm/s) and froth depth (2–4 cm) on the froth transport for a two phase (air–water) system was characterized.Using image analysis techniques, bubble residence times, air recovery, bubble path and bubble size increase through the froth were obtained. This information was complemented by froth surface velocity measurements using the Visiofroth system.It was found that bubbles transported from the pulp–froth interface up to the overflow, showed a minimum residence time for bubbles entering the froth near the lip wall. Also, the air-recovery significantly changes in a range of 7–20% at different operating conditions.Higher residence times promoted bubble size increase by coalescence for bubbles transported from the interface. Conversely, for lower residence times, a smaller increase in bubble size was observed. 相似文献