首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
随着电动汽车的发展,迫切需要具有高安全性、高能量密度、高功率、大容量、长寿命、高环保、低成本等优点的锂离子电池。层状结构的富锂锰基正极材料由于具有比容量高、平台电压高、热稳定性好、价格低廉的特点而被认为是有希望的未来电动汽车候选正极材料之一。尽管其拥有很高的比容量,但仍存在着首次循环不可逆容量高、倍率性能差等问题,纳米化是改进材料倍率性能的一种有效手段。本文以Ni O,Co_3O_4,Mn CO_3和Li_2CO_3为原料,成功制备得到了纳米级的锂离子电池正极材料Li_(1.2)Ni_(0.13)Co_(0.13)Mn_(0.54)O_2。通过X射线衍射(XRD)、扫描电子显微镜(SEM)和充放电测试对所得样品的结构、形貌及电化学性能进行了表征。结果表明,合成的Li_(1.2)Ni_(0.13)Co_(0.13)Mn_(0.54)O_2材料具有层状结构,一次颗粒均匀、细小,平均颗粒尺寸约为90 nm,并具有良好的电化学性能,在2.0~4.8 V以0.1C充放电时,首次放电比容量达到284 m Ah·g~(-1),首次库伦效率为86.1%。材料同时拥有良好的倍率性能,1.0C放电容量达到240 m Ah·g~(-1),3.0C放电容量达到210 m Ah·g~(-1)。  相似文献   

2.
铁氧化物锂离子电池负极材料具有比容量高、资源丰富、价格便宜和环境友好等优势,是目前高容量负极材料的研究热点之一.然而,铁氧化物负极材料巨大的体积效应、较差的循环性能以及大的首次可逆容量损失,影响了其在锂离子电池中的应用.目前研究最多的铁氧化物负极材料是α-Fe_2O_3和Fe_3O_4,理论容量分别为1 007 mA·h·g~(-1)和924 mA·h·g~(-1).关于其电化学性能的改进方法,包括制备不同形貌与尺寸的纳米结构材料以及铁氧化物/碳纳米复合材料.介绍了铁氧化物锂离子电池负极材料的储锂机理及其存在的问题,综述了各类铁氧化物负极材料的制备方法、影响因素及电化学性能,并对铁氧化物负极材料的进一步研究、发展应用予以展望.  相似文献   

3.
Fe_3O_4作为锂离子电池负极材料,理论比容量很高,是一种十分具有应用前景的材料,但是其体积膨胀与导电性差的问题制约了其商业的发展。试验采用简单易行的溶胶凝胶法制备Fe_3O_4/石墨烯复合材料,将纳米棒Fe_3O_4均匀负载在石墨稀上,石墨烯作为桥梁,增加了材料的导电性,同时为Fe_3O_4纳米棒的体积膨胀提供了缓冲作用。试验结果表明,Fe_3O_4/r GO复合材料中石墨烯含量为30. 9%,展现良好循环稳定性及倍率性能,在经过50次循环之后仍具有845. 6 m Ah/g的比容量。  相似文献   

4.
采用氢氧化物共沉淀法和碳酸盐共沉淀法制备4种三元LiNi_(1/3)Mn_(1/3)Co_(1/3)O_2前驱体,然后再采用高温煅烧工艺制得LiNi_(1/3)Mn_(1/3)Co_(1/3)O_2。碳酸盐共沉淀法采用碳酸氢钠作为沉淀剂,氢氧化物共沉淀法分别采用氢氧化钠(正向和逆向加入)、氢氧化钠和氨水作为沉淀剂。通过X射线衍射、扫描电子显微镜、电化学性能测试等方法系统地研究了前驱体制备方法对三元锂离子电池正极材料电性能的影响。结果表明:碳酸盐共沉淀法制得的LiNi_(1/3)Mn_(1/3)Co_(1/3)O_2体颗粒呈现类球形,与有氨水参与的氢氧化物共沉淀法沉淀产物的形貌基本相似。在1 C、3~4.3 V下充放电,不同前驱体制备的LiNi_(1/3)Mn_(1/3)Co_(1/3)O_2首次放电比容量依次为147.0,145.8,140.2,138.1 m A·h/g,循环50周后依次为135.2,131.1,119.3,113.6 m A·h/g,容量保持率为92.0%、89.9%、85.2%、82.1%。  相似文献   

5.
锂离子电池的性能亟待突破瓶颈,当前商用锂离子电池负极材料选用的碳材料容量较低,本文合成制备了一种Mn掺杂石墨烯负载的Co_(0.9)Mn_(0.1)P/RGO复合材料,该材料用于锂离子电池表现出优异的电化学性能。在100 mA/g电流密度下,首次放电比容量达到1 250 mAh/g,首次充电比容量为795 mAh/g,充放电效率63.6%。在800 mA/g电流密度下,循环500次,放电比容量仍然达到367 mAh/g。  相似文献   

6.
将Hummers法制备的氧化石墨烯(graphene oxide,GO)与纳米硅粉进行超声复合和高温氢还原,制备锂离子电池用纳米硅/石墨烯(Si/G)复合材料。利用扫描电镜、透射电镜、X射线衍射和Raman光谱分析,对Si/G复合材料的形貌与结构进行分析与表征,并测试其电化学性能。结果表明,通过高温氢还原,氧化石墨烯全部还原为石墨烯,无其它杂质相生成。石墨烯包覆在纳米硅颗粒表面,形成层状复合结构;与纯纳米硅粉相比,Si/G复合材料的电化学性能明显提高,在300 m A/g电流密度下,首次放电比容量为2 915.0(m A·h)/g,首次充电比容量为1 080.5(m A·h)/g,20次循环后比容量稳定在969.6(m A·h)/g,库伦效率为99.8%;而纯纳米硅粉的首次放电比容量和首次充电比容量分别为932.7和349.4(m A·h)/g,20次循环后比容量仅为6.4(m A·h)/g。  相似文献   

7.
中空结构的V_2O_5材料由于在锂离子嵌入和循环稳定性方面有明显优势,获得了科研人员的特别关注。然而通过简易方法来制备均匀且具有复杂内部结构的V_2O_5中空微米球仍面临挑战。本文首次利用V_2O_5、H_2C_2O_4·2H_2O、H_2O和正丁醇进行溶剂热反应,得到蛋黄结构前躯体,然后将前躯体于空气中烧结,获得均匀的多层V_2O_5核壳结构微米球。采用X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)及电化学测试等手段对其进行表征和测试。V_2O_5核壳结构微米球用作锂离子电池正极材料时,在2.5~4 V电压区间、200 mA/g电流密度条件下放电比容量高达122 m Ah/g,循环200圈后容量保持率高达95.9%。该材料优异的电化学性能主要由于结合了低维和三维纳米结构。  相似文献   

8.
采用超声空化联合机械活化法合成一系列微观形貌不同的锂离子电池正极材料LiMn_2O_4,采用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、电池充放电测试仪对制备的LiMn_2O_4正极材料的相组成特性、微观形貌和电化学性能进行相关测试。结果表明,本方法制备的LiMn_2O_4正极材料具有良好的尖晶石结构,延长机械活化时间可以得到致密的类球形结构的尖晶石材料,其中经过机械活化4 h后烧结得到的样品具有良好的电化学性能,在6 C放电倍率下放电比容量为88.2 mAh·g~(-1),返回0.5 C时容量恢复效率达到91.3%。  相似文献   

9.
以自制Ni0.4Co0.2Mn0.4(OH)2前驱体和Li_2CO_3为原料,在空气气氛下采用固相烧结工艺制备了LiNi_(0.4)Co_(0.2)Mn_(0.4)O_2锂离子电池正极材料。通过SEM和XRD等手段对材料烧结前后形貌与结构进行表征,并测试了烧结后锂离子电池正极材料的电化学性能。结果表明,Ni0.4Co0.2Mn0.4(OH)2前驱体具有良好的片状嵌入结构,且烧结制备的LiNi_(0.4)Co_(0.2)Mn_(0.4)O_2正极材料混排因子c/a=4.967 3,阳离子混排因子I(003)/I(104)=1.25、I(006+102)/I(101)=0.333、I(018)/I(110)=0.87,表明LiNi_(0.4)Co_(0.2)Mn_(0.4)O_2具有良好的层状结构。在2.5~4.6V、0.2C和0.5C下,LiNi_(0.4)Co_(0.2)Mn_(0.4)O_2正极材料的首次放电比容量分别为166和154mAh/g,循环80次后容量分别保持为111和100mAh/g,具有良好的电化学性能。  相似文献   

10.
共沉淀法制备锂离子电池正极材料LiFePO4   总被引:4,自引:0,他引:4  
采用共沉淀法制备橄榄石结构的LiFePO4锂离子电池正极材料,通过X射线衍射(XRD)、透射电镜(TEM)、循环伏安(CV)和恒电流充放电测试等方法对其结构、表观形貌及电化学性能进行了分析研究.结果表明,该方法制备的LiFePO4为均一的橄榄石型晶体结构,颗粒微细;低倍率下充放电测试比容量可达126.3 mA·h/g;循环性能良好,充放电100次循环后,容量损失率仅为9.4%.  相似文献   

11.
以共沉淀法制备的Ni-Mn包覆Co_3O_4前驱体和Li_2CO_3为原料,通过高温固相法制得了具有核壳结构的锂电池正极材料Li(Co_(0.9)Ni_(0.05)Mn_(0.05))O_2.用扫描电镜(SEM)、X射线能谱仪(EDS)、X射线衍射(XRD)和充放电测试表征了样品的形貌、晶体结构和电化学性能.结果表明,所制备的核壳结构Li(Co_(0.9)Ni_(0.05)Mn_(0.05))O_2具有良好的电化学性能,在3.0~4.5 V和3.0~4.6 V,0.2 C下首次放电容量分别达到180.5 m A·h·g~(-1)和201.3 m A·h·g~(-1),在1 C下,循环50周后容量保持率分别为89.3%和63.3%.  相似文献   

12.
尖晶石LiMn_2O_4是当前最具研究价值的锂离子电池正极材料之一。采用碳酸锰热解法制备高活性Mn_2O_3粉末作为尖晶石LiMn_2O_4的前驱体,探究锰锂比对高温固相法合成尖晶石LiMn_2O_4的影响。利用热重分析(TG-DSC)及热力学分析确定碳酸锰热解制备前驱体高活性Mn_2O_3的最佳热解条件:热解温度为600℃时,制备出结晶性能良好、无杂质、分散均匀的Mn_2O_3粉末。通过X射线衍射(XRD)、扫描电镜(SEM)和电化学测试对尖晶石LiMn_2O_4的结构、形貌和电化学性能进行表征。结果表明,随着锂锰比增加,产物的结构、形貌和电化学性能均有所改善和提高。锂源的添加量决定了尖晶石LiMn_2O_4结构、形貌,当Mn∶Li=2. 0∶1. 2时,尖晶石LiMn_2O_4样品的结晶形态完善,表面光滑,颗粒均匀,且无杂质;在0. 5C下,其首次充电比容量达到117. 6 mAh·g~(-1),放电比容量为114. 8 mAh·g~(-1)。循环100周后容量保持率达到91. 8%。在高倍率放电下,仍保持较高的放电比容量和较好的循环性能。  相似文献   

13.
研究了采用静电纺丝法制备NiCo2O4纳米纤维前驱体,并将煅烧后的NiCo2O4纤维用作锂离子电池负极材料,考察了其电化学性能。结果表明:质量比2∶1的Co(NO3)2和Ni(NO3)2经电纺可制备出直径约400 nm的NiCo2O4纳米纤维前驱体;以NiCo2O4纤维作负极材料的锂离子电池首次放电比容量为1 141 mAh/g, 100次循环后放电比容量约为415 mAh/g;电池内部成分电阻仅为3.77Ω,循环性能稳定。  相似文献   

14.
采用共沉淀法合成Ni_(0.5)Co_(0.2)Mn_(0.3)(OH)_2前驱体,将前驱体和LiOH混合均匀后经高温煅烧合成了锂离子电池正极材料LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2,并对其进行电化学性能检测。试验表明,制备的电池在电压2.8~4.3V(vs.Li/Li+)区间内,0.1C倍率下的首次库伦效率为88.4%;在1C倍率下循环100次后,放电比容量为157.7mAh/g,容量保持率为96.6%。  相似文献   

15.
采用射频磁控溅射技术制备LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2薄膜正极,分别在200,300,400,500和600℃下进行退火处理,利用扫描电镜、等离子体发射光谱仪、拉曼光谱仪、X射线衍射仪和X射线光电子能谱仪等对不同温度下退火后的薄膜电极的形貌、结构和物相组成等进行分析,并测试其电化学性能。结果表明,500℃下退火后的LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2薄膜正极放电容量相对较低,但表现出优异的循环稳定性和倍率性能,在50(μA·h)/(cm~2·μm)倍率下循环60圈后,仍保持初始放电容量(130.3(μA·h)/(cm~2·μm))的88.5%,经过电流密度分别为50,100,200,500和50μA/(cm~2·μm)的倍率循环,容量可以恢复到初始值,优异的循环稳定性和倍率性能是由于退火改善了LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2的结晶性,并伴随着离子导电性和电子导电性的提高,但在更高温度(600℃)下退火的电池初始放电容量降低,这是由于高温退火产生的不纯相(Ni~(3+)离子物质)导致的,Co~(2+)和Mn~(3+)离子的出现是电池容量衰减的主要原因。  相似文献   

16.
采用真空气雾化与高能机械球磨法结合,制备SnCoC复合材料作为锂离子电池负极材料,操作简单,时间短,易于实现工业化.采用X射线衍射(XRD)和扫描电子显微镜(SEM)检测合金粉末及复合材料的相结构和表面形貌,结果发现碳的引入不会对合金相结构产生影响,它以无定形碳形式存在,随着球磨时间的增加,合金由晶态向非晶态转变,且颗粒变得均匀,部分颗粒尺寸甚至达到纳米级.将制得材料组装成模拟电池,测试其电化学特性,结果表明:球磨20h的Sn-Co合金比未球磨的合金负极的比容量高且循环更稳定,而将台金与石墨球磨后,所得复合材料的电化学性能进一步提高,首次库仑效率最高达90.6%,50次循环后容量保持率66.7%.分析可知:通过将锡钴合金弥散在无定形碳中,获得非晶纳米晶双相结构的SnCoC复合材料.非晶材料的各向同性,能够缓冲Li-Sn在合金化-去合金化过程中产生的结构和电场应力;纳米级尺寸的材料内部空隙多,有利于锂离子的扩散;碳材料除了稳定的结构外还可以提供一定的容量.这些有利因素结合起来,极大改善了材料的电化学性能.  相似文献   

17.
采用高能球磨方法制备了用作锂离子电池负极材料的Si—Cu/C复合材料。X射线衍射和扫描电子显微镜结果表明,复合材料中Si和Cu5Si是共存的,活性硅颗粒均匀地分散在石墨和惰性的铜硅合金基体中。电化学测试在电流密度0.2mA·cm^-2,电压范围0—1.4V条件下进行,其结果表明高分散Si—Cu/C复合材料首次可逆容量为524mAh·g^-1,远高于目前普遍使用的中间相碳微球;循环寿命也远优于同粒度的硅单体,经过30次循环后容量仍保持531mAh·g^-1。其高比容量和良好的循环性能表明:高分散Si—Cu/C复合材料有望替代碳成为锂离子电池负极材料。  相似文献   

18.
使用简单的水解反应和低温热处理过程所制备的Li_4Ti_5O_(12)/C复合材料具有良好的倍率性能。在水解过程中引入表面活性剂溴化十六烷基三甲铵(CTAB),能够明显地改善锂离子电池负极材料Li_4Ti_5O_(12)/C的倍率性能。在0.5,1,2,5,10C的倍率条件下,电极材料的比容量分别达到162,154,121,80,60 m Ah/g。明显高于使用物理混合方法所制备的Li_4Ti_5O_(12)/C复合材料。同时使用CTAB所制备的Li_4Ti_5O_(12)/C复合材料,在高倍率条件下,还显示出了非常良好的循环稳定性,因为其拥有快速的Li+迁移速率(8.97×10-13cm2/s),较小的传荷电阻(Rct)35.2Ω和较小的体积电阻(Rs)6.8Ω。该方法具有实际的应用价值。  相似文献   

19.
在表面活性剂、超声振动和机械搅拌的协同作用下,采用共沉淀法制备镍钴锰复合氢氧化物前驱体(Ni_(0.5)Co_(0.2)Mn_(0.3)(OH)_2),最后将制备得到的纳米片前驱体与碳酸锂(Li_2CO_3)采用高温固相法烧结合成三元层状正极材料(LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2)。对于实验制得的前驱体和正极材料使用X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、电感耦合等离子体发射光谱仪(ICP-OES)以及电池测试仪对前驱体和正极材料进行表征和电化学性能的检测,以探究表面活性剂对正极材料LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2和其前驱体的影响。实验结果表明:使用两种表面活性剂油胺(OA)和聚乙烯吡咯烷酮-K30(PVP-K30)所制备出的前驱体为近正六边形的纳米片,纳米片尺寸为400 nm左右。所制备出的正极材料在室温下,2.8~4.5 V,1C充放电条件下,其初始放电容量分别达到151.699和157.093 mAh·g~(-1),经过50次循环后容量保持率分别达到88.22%和99.04%。这样也表明所制备出的正极材料LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2具有良好的电化学性能。  相似文献   

20.
以Ni_(0.6)Co_(0.2)Mn_(0.2)(OH)_2与碳酸锂为原料,采用高温固相法制备得锂离子电池正极材料LiNi_(0.6)Co_(0.2)Mn_(0.2)O_2。用X射线衍射、扫描电镜以及充放电测试对样品进行表征,研究了烧结温度对材料电化学性能的影响。结果表明,当烧结温度为880℃时,合成的LiNi_(0.6)Co_(0.2)Mn_(0.2)O_2材料物相单一无杂项,具有标准的的ɑ-Na FeO_2晶型。SEM测试表明,产物为球形且球形度较好,颗粒粒度均一,平均粒度均在10μm。880℃烧结的材料在3.0~4.3 V、0.1 C的倍率下放电比容量可达188 m A·h/g,在1.0 C的倍率下循环10次后电池容量保持率为95.46%,表现出较好的电化学性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号