首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用OM、SEM、TEM、XRD等试验方法,对不同固溶温度下Fe-27Mn-8Al-1.6C低密度钢的力学性能和组织演变规律进行了研究。结果表明,Fe-27Mn-8Al-1.6C钢的密度为6.8 g/cm3。固溶处理对该钢的组织与性能影响较大,高温固溶后试验钢奥氏体晶界间有少量к-碳化物,随着固溶温度的升高,晶界间未溶к-碳化物含量减少直至消失,奥氏体中C含量逐渐增加;在1000 ℃固溶处理后,试验钢具有最佳的强塑性配合,抗拉强度为1266 MPa,断后伸长率为34%,强塑积可达43.1 GPa·%;在冷却过程中,试验钢基体发生调幅分解,大量细小的к-碳化物弥散分布在奥氏体内。  相似文献   

2.
王英虎 《金属热处理》2022,47(7):203-210
借助FactSage数值模拟软件对Fe-(10~20)Mn-(5~10)Al-(0~0.5)C系低密度钢的凝固及冷却路径、相变及析出相进行了研究,利用FactSage软件中的FSstel数据库对该体系的垂直截面图进行计算,分析了Mn、Al及C元素对凝固及冷却过程中相变及析出相的影响,并得到了Fe-15Mn-8Al-0.25C低密度钢的平衡凝固相变路径图。结果表明,Fe-15Mn-8Al-0.25C低密度钢中热力学计算出的平衡相有液相、铁素体、奥氏体和κ-碳化物, 由1600 ℃冷却至600 ℃完整的平衡相变路径为:液相→液相+铁素体→液相+铁素体+奥氏体→铁素体+奥氏体→铁素体+奥氏体+κ-碳化物。C和Mn含量的增加可扩大Fe-15Mn-8Al-0.25C低密度钢奥氏体相区,Al元素增加缩小奥氏体相区。κ-碳化物的析出温度随着Al与C含量的增加而升高,Al与C元素均可促进κ-碳化物析出。Fe-15Mn-8Al-0.25C低密度钢800 ℃时效3 h后的抗拉强度为602 MPa,屈服强度为520 MPa,断后伸长率为28.6%,时效5 h后的抗拉强度为729 MPa,屈服强度为685 MPa,断后伸长率为22.4%,随着时效时间增加,试验钢的强度增加,断后伸长率降低。Fe-15Mn-8Al-0.25C低密度钢的密度为6.99 g/cm3,相比普通钢材减重效果达10.4%。  相似文献   

3.
研究了固溶处理后不同冷速对轻质Fe-15Mn-10Al-1.0C钢组织及力学性能的影响。结果表明,固溶处理后冷却过程中,奥氏体晶内发生调幅分解形成纳米级晶内κ-碳化物,产生沉淀强化。随着冷却速率的降低,γ/δ晶界形成κ-碳化物,使得油淬和空冷试样的第二相强化效果明显,但水淬试样的综合力学性能最好,强塑积高达50.9 GPa%。拉伸试验过程中,晶界κ-碳化物是试验钢空冷和油淬后产生微孔的初始点,γ和δ晶粒间的变形协调不一致是水淬产生微裂纹的主要原因。计算获得奥氏体层错能为78.99 mJ/m~2,变形过程中位错运动切过奥氏体晶内纳米级κ-碳化物,形成大量平面滑移剪切带,为明显平面滑移特征。  相似文献   

4.
借助OM、SEM、TEM、拉伸试验等手段研究了固溶温度对热轧Fe-30Mn-10Al-1C低密度钢组织及力学性能的影响,并阐明了其组织演变和力学性能变化的原因。结果表明,试验钢经热轧及固溶处理后组织均为奥氏体单相组织,固溶处理后出现大量退火孪晶;950~1050 ℃固溶时,平均晶粒尺寸随温度的升高由34 μm增长至138 μm;随着固溶温度的升高,微米κ碳化物逐渐固溶消失,但由于较低成核势垒和较大的过冷度,固溶后仍有大量纳米κ碳化物生成;试验钢轧态的抗拉强度和屈服强度最高,分别为1188 MPa和1123 MPa,但伸长率最低为33%;随固溶温度的升高,试验钢抗拉强度和屈服强度逐渐降低,伸长率则不断升高,1050 ℃时抗拉强度和屈服强度分别为853 MPa和726 MPa,伸长率达到61%。  相似文献   

5.
采用OM、SEM、TEM、VSM等试验方法,对不同时效温度下Fe-27Mn-8Al-1.6C低密度钢的力学性能及析出相变化规律进行了研究。结果表明,试验钢经405 ℃时效处理后,抗拉强度为1225 MPa,强塑积达到44.10 GPa·%,相比固溶态提高了21.4%;固溶态试验钢由奥氏体和由调幅分解形成的к-碳化物组成,经时效处理后,к-碳化物的尺寸和体积分数均有所增大;当时效温度高于455 ℃时,к-碳化物明显长大,呈方形,试验钢发生脆性断裂;随着时效温度的升高,析出相к-碳化物的体积分数增大,试验钢的磁化强度也随之升高。  相似文献   

6.
研究了1000、1050和1100℃水韧处理后Fe-26Mn-7Al-1.3C耐磨钢的力学性能和微观组织,分析其变形过程中的形变硬化行为,研究其微观变形机理。结果表明,水韧处理有利于组织中的κ系碳化物细化固溶,得到均匀的单相奥氏体组织,提高钢的强度和韧性。1050℃水韧处理后试验钢的综合力学性能最佳,其抗拉强度为723.9 MPa,规定塑性延伸强度为395.5 MPa,断后伸长率为48.8%,冲击吸收能量(V型缺口)为263.9 J。连续的形变硬化行为使得试验钢获得高强度与塑性的良好匹配;变形后奥氏体中可观察到泰勒晶格、高密度位错墙及微带结构,符合平面滑移特征。  相似文献   

7.
采用OM、SEM、XRD等实验方法,对不同固溶温度下Fe-22.8Mn-8.48Al-0.86C低密度钢的组织演变规律和力学性能进行了研究。结果表明,固溶处理对实验钢的组织与性能影响较大,实验钢晶粒尺寸随固溶温度的升高而增大,抗拉强度随着固溶温度的升高而降低。在1100℃固溶处理1 h后,实验钢具有最佳的强塑性配合,抗拉强度为757.4 MPa,断后伸长率为68.0%,强塑积可达51.5 GPa·%,计算得出Fe-22.8Mn-8.48Al-0.86C钢的密度为6.9 g/cm^3。  相似文献   

8.
采用OM、SEM、XRD等实验方法,对不同固溶温度下Fe-22.8Mn-8.48Al-0.86C低密度钢的组织演变规律和力学性能进行了研究。结果表明,固溶处理对实验钢的组织与性能影响较大,实验钢晶粒尺寸随固溶温度的升高而增大,抗拉强度随着固溶温度的升高而降低。在1100℃固溶处理1 h后,实验钢具有最佳的强塑性配合,抗拉强度为757.4 MPa,断后伸长率为68.0%,强塑积可达51.5 GPa·%,计算得出Fe-22.8Mn-8.48Al-0.86C钢的密度为6.9 g/cm~3。  相似文献   

9.
利用场发射扫描电镜、电子背散射衍射技术、X射线衍射仪及电子万能试验机等对Fe-8Mn-xAl-0.2C(x=0, 3)冷轧中锰钢的微观组织与性能进行了研究。结果表明,Al的添加使奥氏体化温度明显升高。经高温临界区退火后得到了等轴的奥氏体与铁素体双相组织。添加Al提高了奥氏体的稳定性,影响了试验钢变形过程中的应变硬化行为,材料塑性得到改善。Fe-8Mn-0.2C冷轧试验钢在625℃退火获得了最优综合力学性能,抗拉强度为1220 MPa,伸长率为44%,强塑积为54 GPa·%;Fe-8Mn-3Al-0.2C冷轧试验钢在710℃退火获得了最优综合力学性能,抗拉强度为970 MPa,伸长率为58%,强塑积为56 GPa·%。此外,Al的添加扩大了试验钢获得优异力学性能的退火温度范围。  相似文献   

10.
文中通过OM、SEM、XRD、小角中子衍射、拉伸等试验方法对不同时效态下的Fe-10Al-15Mn-0.8C-5Ni-1.4Cu轻量高锰钢进行组织和力学性能的研究。Fe-10Al-15Mn-0.8C-5Ni-1.4Cu钢的密度为6.79 g/cm~3。时效处理后,奥氏体晶粒边界出现碳化物,随着保温时间的延长碳化物长大且变得连续。550℃时效2 h后,铁素体内有富铜纳米团簇的析出,导致了铁素体的硬度有所增加,而奥氏体的硬度几乎没有变化。时效后晶界上碳化物的析出使得时效后塑性较差,试样均呈现脆性断裂。  相似文献   

11.
在变形温度为925~1150℃和应变速率为0.01~10 s-1的条件下,采用THERMECMASTOR 100 kN热模拟试验机研究了Fe-15Mn-15Al-5Ni-1C低密度钢铸锭的热变形行为,分析了其动态再结晶(DRX)特征,并绘制了其在不同应变量下的热加工图。结果表明:该铸锭变形后的组织主要由高温铁素体(δ-F)、奥氏体(A)、α-铁素体(α-F)和κ-碳化物组成。δ-F和κ-碳化物的存在使得铸锭的热加工性能变差,只有在变形温度升高到1125℃或者应变速率下降到0.02 s-1时,铸锭才能获得再结晶组织,实现软化。Fe-15Mn-15Al-5Ni-1C低密度钢存在两个适宜的热加工区域,区域1:变形温度为1125~1150℃,应变速率为0.01~0.5 s-1;区域2:变形温度为925~1080℃,应变速率为0.01~0.02 s-1。  相似文献   

12.
为了满足汽车轻量化的要求,研制轻质钢迫在眉睫。设计了一种成分(质量分数,%)为Fe-0.25C-3.5Mn-8Al的铁素体基轻质钢,研究了在不同热处理条件下,试验钢的显微组织与力学性能之间的关系。结果表明,冷轧试验钢具有较高的抗拉强度和屈服强度,但断后伸长率较低。退火处理后冷轧试验钢的性能有大幅改善,经过950℃×50 s+400℃×3 min处理后,其强塑积可达22 451 MPa·%。随着退火温度的升高,钢中奥氏体含量逐渐增多,κ-碳化物逐渐溶解直至消失。拉伸变形后部分奥氏体发生转变,奥氏体稳定性参数与强塑积成正比。  相似文献   

13.
设计制备了一种新型Fe-12Mn-7Al-0.2C-0.6Si双相钢,通过拉伸性能测试对比了固溶处理及冷轧退火处理对试验钢拉伸性能的影响,利用光学显微镜(OM)、 背散射电子衍射(EBSD)和扫描电镜(SEM)等手段对试验钢原始及变形组织进行分析.结果表明:组织中含有粗大δ-铁素体和奥氏体相,经冷轧退火处理后得到具有带...  相似文献   

14.
通过光学显微镜、扫描电镜、电子万能拉伸试验机、X射线衍射以及背散射电子衍射等技术方法研究了退火温度对冷轧态Fe-0.4C-10Mn-6Al高强钢的组织与力学性能的影响。结果表明,试验钢冷轧后的微观组织主要为δ-铁素体、α-铁素体、奥氏体、马氏体与碳化物,退火后的组织主要由δ-铁素体、α-铁素体、奥氏体与碳化物组成,其中奥氏体含量因马氏体逆转变而随着退火温度升高而增加。随着退火温度的升高,屈服强度、抗拉强度均逐渐降低,伸长率逐渐提高。当退火温度达到800 ℃时,试验钢的强塑积达到27.84 GPa·%,有较好的综合力学性能。  相似文献   

15.
退火温度对Fe-Mn-Al-C钢组织和拉伸性能的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
采用OM、SEM、TEM和拉伸试验等手段研究了退火温度对Fe-19Mn-2Al-0.6C钢组织和性能的影响。结果表明,退火后试验钢的基体组织为奥氏体。由于回复再结晶的完成程度不同,随着退火温度的升高,晶粒尺寸先减小再增大。同时,退火孪晶的数量逐渐增加,抗拉强度持续降低,但总伸长率先升高然后降低。当施加一定的外部载荷时,在变形过程中会产生大量的变形孪晶和位错。高密度位错在晶界或孪晶界处的缠绕和塞积阻碍了位错的进一步运动。一次孪晶和二次孪生的交割产生的动态Hall-Petch效应,以及位错和孪晶的相互作用共同导致试验钢的高加工硬化能力。Fe-19Mn-2Al-0.6C钢获得最佳综合力学性能的退火温度约为900 ℃,其抗拉强度为947.61 MPa,强塑积为49.30 GPa·%,伸长率为52.03%。  相似文献   

16.
利用差示扫描量热分析法(DSC)研究了淬火态轻质Fe-15Mn-10Al-0. 3C(质量分数,%)钢在升温过程中κ-碳化物的析出行为。由DSC曲线可以发现,δ-铁素体中淬火时形成的DO3相,先转变为L1_2相,再转变为κ-碳化物。利用JMAK方法计算了δ-铁素体中κ-碳化物的析出动力学和奥氏体分解动力学。计算结果表明:DO3相向L1_2相转变的激活能为145. 25 kJ/mol,L1_2相向κ-碳化物转变的激活能为81. 18 k J/mol。此外,试验钢经600℃时效30 s后,δ-铁素体的硬度最高,此时δ-铁素体中κ-碳化物的相对体积分数约为20%。  相似文献   

17.
设计了一种低层错能TWIP(Twinning Induced Plasticity)Fe-25Mn-1Al-0.2C钢,对该钢分别在900、1000和1100℃进行了固溶处理实验,研究了实验钢的微观组织和力学性能。结果表明:实验钢晶粒尺寸随着固溶温度的升高和时间的延长而增大。在1100℃时,退火孪晶贯穿整个晶粒。实验钢的抗拉强度随着固溶温度的升高而降低。当固溶温度为900℃时,随着真应变的增加,应变硬化率缓慢地降低。当固溶温度为1100℃时,均匀塑性变形分为三个阶段,并且观察到孪晶交割。  相似文献   

18.
利用扫描电子显微镜(SEM)、能谱分析仪(EDS)、X射线衍射仪(XRD)、电子背散射衍射(EBSD)和室温拉伸力学性能测试等手段,研究了840~1 000℃范围内退火温度对冷轧轻质Fe-15Mn-8. 5Al-1. 5Si钢组织和力学性能的影响。结果表明:1 000℃×1 min退火的试样力学性能最优,抗拉强度为1 006 MPa,断后伸长率为41. 7%,强塑积高达42 GPa·%; 840和870℃退火的试样奥氏体内和相界处析出了κ-碳化物,严重影响了奥氏体的变形性能,易导致解理断裂,降低钢的塑性。高于900℃退火时,碳化物消失。退火温度的提高改变了α-铁素体和奥氏体两相间的位向关系,导致1 000℃退火组织两相滑移系趋于平行的晶粒比例增多,改善了位错的相间滑移能力,降低了γ/α相界处产生裂纹的可能性,试验钢的塑性得到提升。  相似文献   

19.
采用光学显微镜、扫描电镜、能谱分析和X-射线衍射仪研究了Fe-Cr-Ni-Al-Mo-Si钢铸态及热处理后的显微组织和力学性能。结果表明,试验钢铸态显微组织主要由铁素体基体、沿晶界分布的奥氏体及大小为430~480 nm均匀分布的立方状Ni Al相和分布在Ni Al相上的细小球状Ni Al相组成;经1200℃×0. 5 h空冷固溶处理后在空冷过程中析出大小为50~100 nm弥散分布的球状Ni Al相;固溶处理后再在750、1000℃时效处理1 h,Ni Al相较固溶态粗化,1000℃时效后在铁素体上有奥氏体相析出;拉伸结果表明:在固溶和750℃时效条件下,试验钢无室温韧性,在1000℃时效后由于奥氏体相的析出其室温韧性和规定塑性延伸强度明显提高,抗拉强度值达到了1096 MPa,规定塑性延伸强度为860 MPa;在700℃/150 MPa条件下的蠕变试验表明,固溶态试验钢的稳态蠕变速率最低,达到了6. 83×10-12s-1,然而,奥氏体相的析出并不能有效提高其抗蠕变性能。  相似文献   

20.
通过X射线衍射(XRD)、透射电镜(TEM)、电子背散射衍射(EBSD)以及拉伸实验等研究了时效温度对铸态奥氏体基低密度钢(Mn30Al9Si)组织及力学性能的影响,并研究了其强韧化机制.结果 表明:铸态Mn30Al9Si钢经固溶时效后的组织由奥氏体基体及条状铁素体组成,并包含κ-碳化物、β-Mn等第二相;450℃时效...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号