首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
通过Gleeble-3500热压缩模拟试验机对6061铝合金进行热压缩实验,借助金相显微镜和透射电子显微镜研究合金在变形温度为340~490℃,应变速率为0.001~1 s~(-1)条件下热变形和动态再结晶行为。结果表明:6061铝合金的动态再结晶行为对变形温度和应变速率十分敏感,温度的升高和应变速率的减小都会促进动态再结晶的发生。基于峰值应力建立了合金热变形本构方程,计算得出热变形激活能为235.155 kJ·mol~(-1)。采用加工硬化率-流变应力曲线确定了合金热变形过程中的临界应力(应变)和峰值应力(应变)与Z参数的关系模型。随着温度的升高和应变速率的减小,DRX临界应力(应变)和峰值应力(应变)减小。依据Avrami方程建立了合金动态再结晶体积分数模型,动态再结晶体积分数随应变的增加,呈现先缓慢增加后迅速增加再缓慢增加的特征,所建模型能够较为准确地预测该合金的动态再结晶行为。  相似文献   

2.
采用Gleeble-1500热模拟试验机对双态组织的Ti80合金在变形温度为860~980℃、应变速率为0.01~1 s~(-1)的变形条件下进行了等温热压缩实验,研究了合金的热变形行为,利用加工硬化率确定了不同变形条件下动态再结晶临界应变。结果表明,动态再结晶是Ti80合金热变形过程中的重要软化机制,并发现动态再结晶临界应变随温度的升高和应变速率的降低而减小。基于Z参数和改进后的Avrami方程,构建了Ti80合金动态再结晶临界应变与动力学模型。  相似文献   

3.
通过Gleeble-3500热压缩模拟试验机对6061铝合金进行热压缩实验,借助金相显微镜和透射电子显微镜研究合金在变形温度为340℃?490℃,应变速率为0.001s-1?1s-1条件下热变形和动态再结晶行为。结果表明:合金的动态再结晶行为对变形温度和应变速率十分敏感,温度的升高和应变速率的减小都会促进动态再结晶的发生。基于峰值应力建立了合金热变形本构方程,计算得出热变形激活能为235.155kJ·mol-1。采用加工硬化率-流变应力曲线确定了合金热变形过程中的临界应力(应变)和峰值应力(应变)与Z参数的关系模型。随着温度的升高和应变速率的减小,DRX临界应力(应变)和峰值应力(应变)而减小。依据Avrami方程建立了合金动态再结晶体积分数模型,动态再结晶体积分数随应变的增加,呈现先缓慢增加后迅速增加再缓慢增加的特征,所建模型能够较为准确的预测该合金的动态再结晶行为。  相似文献   

4.
《铸造技术》2017,(7):1581-1584
利用Gleeble-3008热模拟机研究了S32654超级奥氏体不锈钢在950~1 250℃、应变速率为0.001~10 s~(-1)条件下的热压缩变形行为,并建立该材料的热变形本构模型。结果表明:变形温度和应变速率对S32654超级奥氏体不锈钢的流变应力影响显著;流变应力随温度升高而减小,随应变速率增加而增大。温度高于1 150℃、应变速率小于0.1 s~(-1)时钢的应力曲线较平稳,在10 s~(-1)的高应变速率时流变曲线出现动态软化现象。S32654超级奥氏体不锈钢的热变形本构模型预测值与实验值吻合较好。  相似文献   

5.
在1123~1423 K、0.1~10 s-1条件下对18.7Cr-1.0Ni-5.8Mn-0.2N节Ni型双相不锈钢进行70%大变形量热压缩研究。利用OM、SEM和EBSD分析热变形组织。结果表明,铁素体动态再结晶(DRX)主要发生在1123 K较低变形温度,随应变速率增大,晶粒细化程度增加,晶粒不均匀程度减小。应变速率对铁素体DRX影响较大,而奥氏体DRX对变形温度更加敏感。在1223 K、10 s-1条件下,铁素体相发生了以小角度晶界(LAGB)向大角度晶界(HAGB)转变的连续动态再结晶(CDRX),而在1323 K、0.1 s-1条件下,奥氏体相以不连续动态再结晶(DDRX)为主。低应变速率条件下升高温度易诱发DDRX,而在高应变速率条件下易发生CDRX。在高温低应变条件下,奥氏体相晶粒取向主要为(001)和(111)再结晶织构,而铁素体相在(001)和(111)织构之间存在竞争关系。拟合获得临界应力(应变)并确定了其与峰值应力(应变)的关系。随着应变增加,热加工失稳区缩小,且稳定区逐渐向高温高应变速率方向移动,1323~1423 K、0.01~6.05 s-1的热参数条件最适合热加工。  相似文献   

6.
利用Gleeble3800热模拟试验机对20Cr-25Ni-1.5Mo Nb Ti N奥氏体耐热钢在温度为930~1230℃、应变速率为0.005~5 s-1条件下进行热压缩试验,获得不同热压缩条件下的流变应力曲线,用光学显微镜观察热压缩试样的显微组织。结果表明:变形温度相同时,随应变速率增大动态再结晶程度逐渐减小,甚至完全处于加工硬化状态,其热激活能为328 k J/mol;当应变速率为5 s-1、变形温度为1130~1230℃、应变量较小时和应变速率为0.005 s-1、变形温度930~1230℃、应变量较大时,出现失稳现象;动态再结晶的临界应力与Z参数之间成线性关系,峰值应力与应变速率和变形温度也有线性关系。  相似文献   

7.
采用Gleeble-3800热模拟试验机,对Incoloy825高温合金在应变为0.92、温度为950~1150℃和应变速率为0.001~1 s-1条件下进行单道次压缩试验。依据真应力-真应变曲线建立了动态再结晶临界方程和动态再结晶动力学模型。结果表明,Incoloy825高温合金热变形对温度和应变速率较为敏感,真应力-真应变曲线整体满足硬化-软化-稳态的流变过程,动态再结晶是Incoloy 825高温合金材料的主要软化机制。在热变形过程中,动态再结晶临界应变随变形温度的升高和应变速率的降低呈减小趋势。对动态再结晶动力学模型进行分析发现,动态再结晶百分含量随变形温度的升高和应变速率的降低而增大,表明高变形温度和低应变速率对动态再结晶具有促进作用。  相似文献   

8.
依据粉末冶金Ti-47Al-2Nb-2Cr合金热模拟压缩实验结果,研究了变形温度为950~1150 ℃、应变速率为0.001~0.1 s(-1)条件下材料的流变力学行为。采用Poliak和Jonas所提出的临界条件动力学理论,确定了该合金的动态再结晶临界应变(ε_c)和临界应力(σ_c),揭示了变形温度与应变速率对ε_c和σ_c的影响规律。结果表明,温度补偿应变速率因子Z与ε_c、σ_c、ε_p(峰值应变)和σ_p(峰值应力)间的关系可以采用指数函数形式表征。建立了该合金动态再结晶临界发生模型:ε_c=1.2×10~(-3)Z~(0.147),动态再结晶临界应变与流变应力曲线峰值应变的比值约为 0.73。根据对模型的分析表明,临界应变与 Z 参数之间呈现正相关性,即随着 Z 参数的减小(变形温度升高或应变速率降低),材料发生动态再结晶的临界应变减小,说明变形温度的升高与应变速率的下降能够促进动态再结晶行为的发生。通过对热变形后微观组织的观察,验证了所建立动态再结晶临界模型的可靠性。  相似文献   

9.
采用Thermecmaster-Z型热/力模拟试验机在变形温度为825~1125℃,应变速率为0.001~1 s~(-1)条件下对Ti-10V-2Al-3Fe合金进行热模拟压缩实验,分析了热变形参数对其流变行为的影响,并通过加工硬化率方法研究了该合金的动态再结晶临界条件。结果表明:合金的流变应力随变形温度的降低或应变速率的提高而增大;通过lnθ~ε曲线出现拐点及dlnθ/dε~ε曲线出现最小值判据,确定了该合金的动态再结晶临界应变;动态再结晶临界应变随应变速率的增大及变形温度的降低而增加;Z参数方程能较好地反映合金动态再结晶临界应变与热变形条件间的关系,动态再结晶临界应变与Z参数间的关系可表示为ε_c=2.6735×10~(-2)Z~(0.0817);临界应变与峰值应变之间存在线性关系,即ε_c=0.508ε_p。  相似文献   

10.
采用Gleeble3800热压缩模拟试验机研究了新型超高强韧TB17钛合金775~905℃温度范围内、应变速率0.001~10 s~(-1)条件下的热变形行为。分析了该合金在热变形过程中流变应力软化特点及显微组织演变规律,建立了该合金Arrhenius型本构方程。结果表明:采用不同变形温度,TB17钛合金峰值应力对应变速率敏感程度不同,在相变温度以下变形时,峰值应力对低应变速率敏感;而在相变温度以上变形,峰值应力对高应变速率敏感。应变速率对TB17钛合金显微组织具有重要影响,合金应变速率大于0.1 s~(-1)时,以发生动态回复为主,而应变速率为0.001~0.1 s~(-1)时以发生动态再结晶为主;降低应变速率有利于动态再结晶发生,合金在应变速率0.001 s~(-1)时可获得粒度约25μm的β晶粒。变形温度对动态再结晶具有重要影响,在相变温度以下变形仅发生初生α相再结晶,而在相变温度以上变形则发生β相动态再结晶。TB17钛合金在相变点温度以下的热变形激活能为538.4 kJ/mol,在相变点温度以上的热变形激活能为397.4 kJ/mol,该合金在775~905℃热变形软化机制为晶界滑移机制。  相似文献   

11.
采用热力模拟试验机对Al-0.83Mg-0.59Si铝合金进行热压缩实验,研究了变形温度300~500 ℃、变形速率0.001~10 s-1下材料的动态再结晶行为。实验得到Al 0.83Mg 0.59Si合金在300~500 ℃变形时,软化机制以动态再结晶为主;流变应力会随着变形温度的降低和变形速率的升高而升高,较低变形速率下,动态再结晶行为更充分,应力软化现象更明显。统计实验所得流变应力曲线数据,建立了热变形本构方程,确定了合金热变形激活能Q为480.243 kJ/mol 。基于加工硬化率曲线,建立了其动态再结晶临界应变模型。结果表明,Al-0.83Mg-0.59Si铝合金的流变应力随温度的升高和变形速率的降低而降低,动态再结晶是其主要的软化机制。临界应力与峰值应力存在线性关系:σc=0.85σp-5.061 58。引入Zener Hollomon参数来描述变形条件对临界条件的影响,得到临界应变与Z参数的关系为:εc=0.000 134Z0.051 64。  相似文献   

12.
采用MMS~(-1)00热力模拟试验机对BFe10-1-1合金进行热压缩实验,研究了在温度800~1000℃和应变速率0.01~10 s~(-1)下的动态再结晶行为。基于加工硬化率对合金的应力应变进行分析,得到BFe10-1-1合金的动态再结晶临界应变。结果表明,BFe10-1-1合金在实验条件下发生了回复与动态再结晶,850℃时,0.01~10 s~(-1)下动态再结晶临界应变分别为0.106、0.109、0.103、0.099和0.089,即相同温度下,高的应变速率比低的应变速率先发生动态再结晶;1 s~(-1)时,80~1000℃对应的临界应变分别为0.111、0.103、0.094、0.097和0.096,即随着温度的升高,临界应变数值减小,动态再结晶提前;临界应力随应变速率的减小和变形温度的升高而减小。  相似文献   

13.
张楚博  米振莉  毛小玲  徐梅 《轧钢》2018,35(1):17-22
采用Gleeble-3500热模拟试验机对超高强DP980钢进行热压缩试验,研究其在变形温度为900~1 200℃、应变速率为0.05~30s~(-1)条件下的动态再结晶行为,分析了变形温度和应变速率对真应力-真应变曲线的影响。结果表明:超高强DP980钢在变形过程中,存在动态再结晶和动态回复两种软化机制,且随着温度的升高和应变速率的降低,临界应变越小,动态再结晶越容易发生;同时,得到了发生动态再结晶时的形变激活能,建立了峰值应变模型、动态再结晶临界应力模型和动态再结晶动力学模型。  相似文献   

14.
借助Gleeble-3500热模拟试验机研究了A100超高强度钢在变形温度为850~1200℃、应变速率为0.001~10 s~(-1)和变形程度为60%条件下的热变形行为。基于实验数据计算了动态再结晶激活能,通过引入无量纲Z参数表征了动态再结晶的临界应变/应力、峰值应变/应力和稳态应变/应力模型,并绘制了动态再结晶状态图,同时对该钢的组织演变进行了分析。结果表明:该钢的动态再结晶激活能为380.177 k J·mol~(-1);随着变形温度的升高或应变速率的下降,Z参数逐渐减小,更容易发生动态再结晶行为,但其晶粒尺寸随之增大,其中在950~1050℃、0.01~0.1 s~(-1)和1050~1150℃、1~10 s~(-1)范围内进行热加工可获得细小、均匀的晶粒组织。根据实验结果建立了动态再结晶晶粒尺寸预测模型,其预测值与实验值具有较高的吻合度。  相似文献   

15.
采用Formastor-Digital全自动相变仪,对CSP生产线生产的22MnB5热成形钢进行单道次压缩实验。测定了实验钢在变形温度900~1150℃、应变速率0.1~30 s~(-1)下的动态再结晶行为。结果表明:当应变速率越小,变形温度越高时,越易发生动态再结晶,同时临界变形量和峰值应力越低。利用线性回归方法拟合应力、应变速率以及变形温度间的关系,得到22MnB5热成形钢的Z参数和变形激活能。在相同的加热条件下,忽略初始晶粒大小的影响,得到临界变形模型。根据屈服应力与应变速率间的关系,建立了高温奥氏体区流动应力-应变模型。  相似文献   

16.
通过Gleeble-3800热力模拟试验机采用高温轴向压缩试验,在温度为850~1150℃,应变速率为0.01~10 s~(-1)的条件下,对一种碳化物和金属间化合物复合析出硬化超高强度20Co14Ni12Cr2Mo Al钢的高温变形及动态再结晶行为进行了研究。结果表明,试验钢流变应力和峰值应变随着变形温度的升高和应变速率的降低而减小;随着变形速率的提高,其发生完全动态再结晶的温度也逐渐升高。当变形速率为10 s~(-1)时,其变形温度高于1050℃,才能发生完全动态再结晶;完全动态再结晶晶粒的平均尺寸随着Zener-Hollomon参数的增加而减小,试验钢完全动态再结晶晶粒尺寸与Z参数之间的关系模型为:D_(DRX)=2.644×10~4·Z~(-0.119),并建立了该钢的动态再结晶状态图;试验钢的热变形激活能Q值为449.20 k J/mol。  相似文献   

17.
对Al-Cu-Li合金进行温度300~500℃、应变速率0.001~10s~(-1)的等温热压缩,分析合金的流变行为:结合TEM和EBSD研究合金热变形过程中的组织演变。结果表明:合金流变曲线分为3个阶段:加工硬化阶段、过渡阶段和稳态变形阶段;变形温度越高,流变应力达到动态平衡所需应变量越小。基于应变硬化率(θ)与流变应力(σ)之间的关系,确定动态再结晶的临界应变(ε_c);不同热变形条件下的临界应变(ε_c)与峰值应变(ε_p)之比为0.30342~0.92828;临界应力(σ_c)与峰值应变(σ_p)之比为0.88492~0.99782。引入最大软化率应变(ε~*)和中间变量Z/A,建立ε_c和ε~*与Z/A的关系表达式。构建Al-Cu-Li合金动态再结晶动力学模型,模型表明,温度越高或应变速率越低,越有利于促进动态再结晶分数的增加;显微组织分析结果与模型预测规律一致。Al-Cu-Li合金动态再结晶形核机制主要为晶界突出形核机制、亚晶合并长大机制以及粒子促进形核机制,随温度升高和应变速率的降低,晶内亚晶合并长大机制得到加强。  相似文献   

18.
采用Gleeble-3800热力模拟试验机在温度为1123~1423 K、应变速率为0.001~10 s~(-1)的条件下对2101双相不锈钢进行了热压缩实验,以研究热变形参数对其热加工行为的影响规律。结果表明,相同应变速率下,随温度升高,流变曲线由动态再结晶向动态回复转变。变形速率由0.001 s~(-1)增至0.01和0.1 s~(-1)提高了动态再结晶温度范围,而1和10 s~(-1)的较高应变速率不利于动态再结晶。在应变速率为0.001~0.1s~(-1)、变形温度为1253~1323 K时,峰值应力所对应的应变越小,奥氏体动态再结晶越容易发生,有利于等轴状再结晶组织形成。低应变速率下,变形温度升高使奥氏体再结晶晶粒长大,且Zener-Hollomon参数较大时,动态再结晶效果变差与Mn稳定奥氏体能力较Ni弱有关。基于热变形方程计算得到该不锈钢热变形激活能Q=464.49 k J/mol,略高于2205双相不锈钢,并建立了峰值流变应力本构方程。结合不同变形条件下的应变曲线和显微组织,根据热加工图确定了最佳热加工区域为应变速率在0.001~0.1 s~(-1)、变形温度为1220~1350 K,该区域功率耗散系数处于0.40~0.47的较高值,发生了明显奥氏体动态再结晶。  相似文献   

19.
采用Gleeble-1500热模拟试验机测定7085铝合金在变形温度为350~450℃,应变速率为0.001、0.01、0.1和1 s~(-1)时的真应力-应变曲线,借助光学显微镜(OM)和背散射电子衍射(EBSD)对变形后的试样进行组织分析,研究应变速率对7085铝合金流变应力和微观组织的影响。结果表明:稳态流变应力随变形速率的增大而增大,真应力-应变曲线可分为加工硬化阶段、动态软化阶段和稳态阶段;再结晶晶粒呈链状分布在晶界处,随着应变速率的降低,再结晶晶粒的尺寸和再结晶分数不断增大。  相似文献   

20.
为了更好地剖析AlCu4SiMg合金的动态再结晶(DRX)行为和流变行为的耦合效应,实施了具有DRX演变模型的有限元模拟。利用Gleeble-3500热模拟试验机,在温度为648~748K,应变速率为0.01~10s~(-1)的变形条件下对该合金进行等温压缩实验。依据实验所得的真实应力-应变数据,拟合应变硬化率曲线(表征dσ/dε与σ之间的关系),并识别产生动态再结晶时的临界应变值(ε_c)。通过对材料参数的求解,确定DRX的体积分数方程和DRX达到50%时的应变方程。构建DRX体积分数演变的有限元(FE)模型,对一系列等温压缩实验进行模拟仿真。DRX体积分数演变可视化结果显示:在同一应变速率条件下,达到相同DRX体积分数的应变量随温度的降低而增加;在同一温度条件下,该应变量随应变速率的增加而增加。最后,通过金相分析验证AlCu4SiMg合金的DRX动力学模型及有限元模拟结果的可靠性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号