首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
在250-400℃的温度范围和0.1-50 s^-1的应变速率范围内对ZK60合金进行压缩变形,对其流变行为和显微组织进行研究。结果表明,在低应变速率(0.1-1 s^-1)下压缩变形时,再结晶主要发生在初始晶界上;在高应变速率(10-50 s^-1)下压缩变形时,再结晶同时在初始晶界和孪晶上发生。合金在应变速率10-50 s^-1和温度250-350℃的变形条件下获得均匀、细小的再结晶组织。因此,合金的最佳热加工工艺范围为应变速率10-50 s^-1、变形温度250-350℃。高应变速率压缩变形条件下的孪生诱发动态再结晶过程分三步,首先,高位错密度孪晶分割初始晶粒;然后,孪晶内的位错发生重排形成亚晶;最后,随着应变的增加而形成再结晶晶粒。  相似文献   

2.
在250~400°C的温度范围和0.1-50 s-1的应变速率范围内对ZK60合金进行压缩变形,对其流变行为和显微组织进行研究。结果表明,在低应变速率(0.1~1 s-1)下压缩变形时,再结晶主要发生在初始晶界上;在高应变速率(10~50 s-1)下压缩变形时,再结晶同时在初始晶界和孪晶上发生。合金在应变速率10~50 s-1和温度250~350°C的变形条件下获得均匀、细小的再结晶组织。因此,合金的最佳热加工工艺范围为应变速率10~50 s-1、变形温度250~350°C。高应变速率压缩变形条件下的孪生诱发动态再结晶过程分三步,首先,高位错密度孪晶分割初始晶粒;然后,孪晶内的位错发生重排形成亚晶;最后,随着应变的增加而形成再结晶晶粒。  相似文献   

3.
采用Gleeble-3800热压缩实验机研究了新型Ni-Cr-Co基合金在1050~1250 ℃、0.001~1 s-1条件下的热变形行为,并利用EBSD探讨了变形温度和应变速率对合金组织演变和动态再结晶形核机制的影响。结果表明,流变应力随变形温度的升高而降低,而随应变速率的增大而增加。基于流变应力曲线,建立合金的Arrhenius本构方程和热加工图,得到热变形激活能为520.03 kJ/mol,最佳热加工区间为1175~1250 ℃、0.006~1 s-1,该区域最大功率耗散效率为45%。动态再结晶分数随变形温度的升高和应变速率的降低而增加,且动态再结晶过程形成均匀细小的等轴晶粒以及∑3孪晶界。动态再结晶形核主要以晶界“弓出”为特征的不连续动态再结晶机制主导。低温高应变速率下,持续亚晶转动诱导的连续动态再结晶作为辅助形核机制发挥作用。  相似文献   

4.
为了研究Mg-Zn-Zr-Gd合金的热压缩变形行为,采用Gleeble-3500型热模拟试验机,在变形温度为300~400℃,变形速率为0.001~1 s-1条件下对合金进行热压缩实验。分析了在不同的热压缩条件下合金的真应力-真应变曲线,通过引入Z参数建立了相关流变应力本构方程,同时观察了合金的微观组织演变。结果表明:合金在热压缩变形过程中主要发生了动态再结晶,且合金的流变应力随着应变速率降低和温度升高而减小。在低变形温度或高应变速率下进行热压缩变形时,再结晶晶粒比较细小,但是动态再结晶进行不充分,动态再结晶仅仅发生在晶界处且分布不均匀,仍然存在原始大晶粒。随着变形温度的升高和应变速率的降低,再结晶区域明显增加,再结晶晶粒也逐渐长大。根据热加工图分析得到合金最佳的热加工成形工艺区域为:温度为350~400℃,应变速率为0.1~1 s-1。  相似文献   

5.
通过热压缩实验,研究了Incoloy825合金在变形量为60%,温度为950~1150℃和应变速率0.001~1s-1范围内热变形行为。基于Arrhenius方程和Zener-Hollomon参数模型,建立该合金的本构方程模型。采用金相显微镜(OM)和电子背散射衍射(EBSD)技术研究了合金的组织演变规律。结果表明,随着变形温度的升高或应变速率的降低,DRX的百分含量增加。热变形过程中DRX既包括晶界弓起形核机制的不连续动态再结晶(DDRX)也包括渐进式亚晶旋转形核机制的连续动态再结晶(CDRX)。随着变形温度的升高或应变速率的降低DDRX增强而CDRX减弱。此外随着温度的升高或应变速率的降低,低角度晶界逐渐向高角度晶界转化。同时随机分布的Σ3孪晶界趋于均匀化,且对动态再结晶起促进作用。  相似文献   

6.
利用Thermecmaster-Z型热模拟试验机在β相区对铸态TB6钛合金进行了热压缩试验,并对其动态再结晶行为进行了研究。结果表明,合金在β热变形过程中主要存在两类形核位置:原始β晶界附近及β晶粒内部,相应地存在两类动态再结晶机制:不连续动态再结晶和连续动态再结晶。在较高应变速率(≥0.01s-1)时,以不连续动态再结晶机制为主,但动态再结晶发生的程度较低,不能通过此机制使组织获得明显细化;在低应变速率(≤0.001s-1)和高变形温度(≥950℃)时,以连续动态再结晶机制为主。此时,合金动态再结晶晶粒直接由亚晶转变而成,组织均匀、细小。  相似文献   

7.
在变形温度为1223~1423 K及应变速率为0.01~10 s-1的条件下,利用MMS-300热模拟试验机开展单道次压缩变形实验,结合SEM-EBSD和TEM等观察分析技术,研究了一种高锰奥氏体孪晶诱发塑性(TWIP)钢的高温热变形及再结晶行为,对其动态再结晶过程中的组织演变规律及其与应力-应变曲线的相关性进行了分析和表征.结果表明,该高锰奥氏体TWIP钢的热变形行为对应变速率较敏感;当应变速率低于0.1 s-1时,热变形过程中发生动态再结晶;当应变速率高于1 s-1时,发生动态回复.通过回归计算建立了该高锰奥氏体TWIP钢的热变形本构方程,分析认为动态再结晶过程中的组织演变规律与其应力-应变曲线密切相关.随着应变量的增加,晶界迁移诱导再结晶形核;形变量进一步增加,产生大量亚晶界;相邻亚晶界上的位错攀移和滑移等运动使晶界合并,导致再结晶晶粒形成.  相似文献   

8.
利用Geeble1500热模拟实验机对双辊连续铸轧AZ31B镁板在变形温度为100℃,应变速率为10-3s-1的条件下进行单轴压缩变形,并利用金相显微镜和透射电子显微镜对其微观组织进行观察。结果表明:在上述的条件下变形时,合金中产生大量的孪晶,孪晶与孪晶之间相互交截,在孪晶界及孪晶交截区出现大量的位错,并且有动态再结晶核心及再结晶小晶粒,说明该合金中动态再结晶形核位置主要为孪晶界及孪晶-孪晶交截区。  相似文献   

9.
采用Gleeble-3500热模拟试验机进行了690合金等温恒应变速率热压缩实验,研究不同热变形条件下的流变行为和显微组织演变规律,并研究了原始晶粒尺寸对流变行为的影响。通过试验获得的峰值应力数据,建立了690合金高温热变形的本构方程。结果表明,减小原始晶粒尺寸可降低690合金在热变形过程中的变形抗力,增加动态再结晶体积分数,而原始晶粒尺寸对动态再结晶晶粒尺寸的影响则非常小。在较低温度区间,动态再结晶晶粒优先以原始晶界处产生的大量亚晶作为基础,通过亚晶界迁移形成再结晶核心;在较高热变形温度区间,再结晶晶粒主要以大角度晶界迁移的方式长大成粗晶粒。  相似文献   

10.
靳琛  杜延鑫  张驰  张立文 《金属热处理》2021,46(12):175-179
采用Gleeble热模拟试验机对Ni-Cr-Mo系高温合金Hastelloy C276进行单道次和双道次热压缩试验,获得了不同热变形条件下的流变应力曲线和微观组织,在此基础上回归了该合金热变形物理冶金模型及参数,进而构建了微观组织拓扑演化的元胞自动机模型。结果表明:Hastelloy C276高温合金在高温热压缩过程中易发生动态再结晶,当动态再结晶不完全时,在热压缩保温或道次间歇内,再结晶晶粒将进一步快速生长而发生亚动态再结晶。Hastelloy C276高温合金再结晶行为对变形温度、变形速率、应变量等工艺参数敏感;构建的元胞自动机模型,集成计算了热压缩和道次间歇过程中的位错密度、再结晶形核及晶界迁移等,可有效表征多工艺参数下Hastelloy C276高温合金热压缩过程中的微观组织拓扑结构演化和应力-应变响应。  相似文献   

11.
采用热压缩试验方法,对Ti-5553钛合金的动态再结晶行为进行研究。结果表明,在温度800~860℃、应变速率0.01~10s-1的范围内,Ti-5553合金在高温、低应变速率变形时,晶界弓出形核是其主要的动态再结晶形核机制;在低温、高应变速率、大变形量变形时,位错塞积形核是主要的动态再结晶形核机制。在非均匀变形的条件下材料产生绝热剪切现象,其形核主要以亚晶吞并长大形核机制进行。  相似文献   

12.
采用Gleeble-3500热模拟试验机进行高温等温压缩实验,研究了变形条件对GH690合金高温变形动态再结晶的影响。结果表明:GH690合金动态再结晶过程是一个受变形温度和应变速率控制的过程,在应变速率为0.001~1s-1的实验条件下,GH690合金获得完全动态再结晶组织所需的温度随变形速率的增大而升高;动态再结晶晶粒尺寸随变形温度升高而增大。采用力学方法直接从流变曲线确定了GH690合金发生动态再结晶的临界应变量,并回归出临界应变量与Z参数的关系式:εc=1.135×10-3Z0.14233。GH690合金的主要动态再结晶机制是原始晶界凸起形核的不连续动态再结晶机制(DDRX),而新晶粒通过亚晶逐渐转动而形成的连续动态再结晶机制(CDRX)则起辅助作用。  相似文献   

13.
采用Gleeble-1500热模拟机,在变形温度750-900℃,应变速率0.01-10s~(-1)的条件下,对连续柱状晶BFe10-1-1合金进行了高温压缩变形,研究了合金的动态再结晶行为.结果表明,动态再结晶温度在850℃左右;热激活能Q=427.937kJ/mol,高于同成分的等轴晶BFe10-1-1合金;当ln Z<43时,合金发生部分动态再结晶;当43≤ln Z≤51时,发生部分动态再结晶(850和900℃)或不发生动态再结晶(750和800℃),为该合金发生动态再结晶的中间区域;当ln Z>51时,该合金不发生动态再结晶.存在发生动态再结晶的ln Z值中间区域以及热激活能较高,表明具有连续柱状晶组织的金属与等轴多晶金属发生动态再结晶的机理有所不同.在本文工艺参数范围内,随应变速率增大,合金发生动态再结晶的区域有所扩大;动态再结晶晶粒易在合金晶界处以晶界弓弯方式形核,形成的再结晶晶粒在晶界扩张的同时,在晶内形成孪晶,并以孪生动态再结晶方式演变成晶粒带.  相似文献   

14.
7150铝合金高温热压缩变形流变应力行为   总被引:7,自引:2,他引:5  
在Gleeble-1500热模拟机上对7150铝合金进行高温热压缩实验,研究该合金在变形温度为300~450 ℃和应变速率为0.01~10 s~(-1) 条件下的流变应力行为.结果表明:流变应力在变形初期随着应变的增加而增大,出现峰值后逐渐趋于平稳;峰值应力随着温度的升高而减小,随着应变速率的增大而增大;可用包含Zener-Hollomon参数的Arrhenius双曲正弦关系来描述合金的热流变行为,其变形激活能为226.698 8 kJ/mol;随着温度的升高和应变速率的降低,合金中拉长的晶粒发生粗化,亚晶尺寸增大,再结晶晶粒在晶界交叉处出现并且晶粒数量逐渐增加;合金热压缩变形的主要软化机制由动态回复逐步转变为动态再结晶.  相似文献   

15.
利用Gleeble-3800热模拟试验机对新型Co-Ni基高温合金进行热压缩试验,研究其在变形温度为950~1100℃、应变速率为0.01~10 s-1、真应变为0.693时的热变形行为和微观组织演变。结果表明,合金流动应力随变形温度的升高或应变速率的降低而减小。合金平均晶粒尺寸随变形温度的升高而增加,降低变形温度和提高应变速率可细化动态再结晶晶粒。基于EBSD和TEM分析表明,合金热变形过程中非连续动态再结晶(DDRX)作为主要动态再结晶(DRX)机制,孪晶形核作为辅助形核机制。  相似文献   

16.
Al-Cu-Mg-Ag合金热压缩变形的流变应力行为和显微组织   总被引:3,自引:0,他引:3  
采用热模拟实验对Al-Cu-Mg-Ag耐热铝合金进行热压缩实验,研究合金在热压缩变形中的流变应力行为和变形组织.结果表明:Al-Cu-Mg-Ag耐热铝合金在热压缩变形中的流变应力随着温度的升高而减小,随着应变速率的增大而增大;该合金的热压缩变形流变应力行为可用双曲正弦形式的本构方程来描述,其变形激活能为196.27 kJ/mol;在变形温度较高或应变速率较低的合金中发生部分再结晶,并且在合金组织中存在大量的位错和亚晶;随着温度的升高和应变速率的降低,合金中拉长的晶粒发生粗化,亚晶尺寸增大,位错密度减小,合金的主要软化机制逐步由动态回复转变为动态再结晶.  相似文献   

17.
通过AZ31镁合金热压缩试验,采用电子背散射衍射(EBSD)技术,对不同变形条件(不同温度、应变速率和变形程度)下镁合金热变形过程中的动态再结晶行为、晶粒取向和织构的产生等现象进行研究。结果表明,变形温度越高,再结晶程度表现得越充分,晶粒组织也越均匀,而变形程度越大或应变速率越小,再结晶程度则越大。在镁合金热变形过程中,变形温度是决定其动态再结晶机制的最大影响因素。300℃时,AZ31镁合金再结晶晶粒在原始晶界和亚晶界处形核,再结晶行为主要由亚晶界的转动形成,表现出典型的连续动态再结晶(CDRX)特征。400℃时,局部剪切变形时再结晶晶粒取向发生偏转,表现出典型的旋转动态再结晶(RDRX)特征。热压缩过程中产生■拉伸孪生,晶粒重新旋转基面取向形成基面垂直于压缩方向的纤维织构。  相似文献   

18.
在变形温度为300~460℃,应变速率为0.001~1.000 s-1的条件下,采用Gleeble-1500热模拟试验机对7B50铝合金的热变形加工行为进行了研究.结果表明,7B50铝合金在热压缩变形中的流变应力随着温度的升高而减小,随着应变速率的增大而增大.对该合金进行热变形加工的适宜条件是:热压缩加工温度为380~460℃、应变速率为0.100~1.000 s-1.在变形温度较高或应变速率较低的合金中发生部分再结晶,并且在合金组织中存在大量的位错和亚晶.随着温度升高和应变速率降低,亚晶尺寸增大,位错密度减小,合金的主要软化机制逐步由动态回复转变为动态再结晶.  相似文献   

19.
7085铝合金的热变形组织演变及动态再结晶模型   总被引:2,自引:0,他引:2  
通过等温压缩实验,系统研究热变形参数(变形温度、应变速率及应变量)对7085铝合金热变形组织演变的影响。结果表明:升高变形温度以及降低应变速率,均有利于7085铝合金的动态再结晶发生,导致变形后的7085铝合金位错密度降低,再结晶晶粒尺寸增大;随着应变量的增加,变形后的合金位错密度降低,动态再结晶体积分数增大。采用线性回归方法建立包括峰值应变方程、临界应变方程、动态再结晶动力学方程以及动态再结晶晶粒尺寸方程的7085铝合金动态再结晶模型。  相似文献   

20.
采用等温热压缩实验研究了一种新型镍基高温合金在不同热变形条件下(变形温度1040~1120℃、应变量0.35~1.2、应变速率0.1 s-1)的动态再结晶行为。通过光学显微镜(OM)、扫描电子显微镜(SEM)和电子背散射衍射仪(EBSD)研究变形温度和应变量对合金热变形过程中组织演变和动态再结晶(DRX)形核机制的影响。结果表明,根据加工硬化率曲线能够准确确定DRX出现的临界应力和临界应变。合金的DRX晶粒体积分数随变形温度和应变量的增加而增加。在高温低应变速率下,不连续动态再结晶(DDRX)和连续动态再结晶(CDRX)形核机制同时发生。随着变形温度的升高,CDRX形核机制减弱,而CDRX机制在高温条件下占据主导。随着应变量的增加,合金中DDRX机制逐渐变强。热变形后期,CDRX仅作为辅助形核机制发挥作用。另外,Σ3孪晶界的形成有助于DRX晶粒的形核。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号