首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Liu  Hong-hui  Ning  Zhi-liang  Sun  Hai-chao  Cao  Fu-yang  Wang  Hao  Zhao  Xin-yi  Sun  Jian-fei 《中国铸造》2016,13(1):30-35
The microstructures of an Mg-4Y-3Nd-0.5Zr alloy by differential pressure casting were investigated using scanning electron microscopy(SEM) and transmission electron microscopy(TEM), and its tensile deformation behavior was measured using a Gleeble1500 D themo-simulation machine in the temperature range of 200 to 400 °C at initial strain rates of 5×10-4 to 10-1 s-1. Results show that the as-cast microstructure consists of primary α-Mg phase and bone-shaped Mg5 RE eutectic phase distributed along the grain boundary. The eutectic phase is dissolved into the matrix after solution treatment and subsequently precipitates during peak aging. Tensile deformation tests show that the strain rate has little effect on stress under 300 °C. Tensile stress decreases with an increase in temperature and the higher strain rate leads to an increase in stress above 300 °C. The fracture mechanism exhibits a mixed quasi-cleavage fracture at 200 °C, while the fracture above 300 °C is a ductile fracture. The dimples are melted at 400 °C with the lowest strain rate of 10-4 s-1.  相似文献   

2.
Hot deformation behavior of Mg-7.22Gd-4.84Y-1.26Nd-0.58Zr magnesium alloy   总被引:1,自引:0,他引:1  
The behavior evolvement of Mg-7.22Gd-4.84Y-1.26Nd-0.58Zr(GWN751K) magnesium alloy during the hot deformation process was discussed.The flow stress behavior of the magnesium alloy over the strain rate range of 0.002 to 2.000 s-1 and in the temperature range of 623 to 773 K was studied on a Gleeble-1500D hot simulator under the maximum deformation degree of 60%.The experimental results showed that the relationship between stress and strain was obviously affected by strain rate and deformation temperature.The flow stress of GWN751K magnesium alloy during high temperature deformation could be represented by the Zener-Hollomon parameter in the hyperbolic Arrhenius-type equation.The stress exponent n and deformation activation energy Q were evaluated by linear regression analysis.The stress exponent n was fitted to be 3.16.The hot deformation activation energy of the alloy during hot deformation was 230.03 kJ/mol.The microstructures of hot deformation were also influenced by strain rate and compression temperature strongly.It was found that the alloy could be extruded at 723 K with the mechanical properties of σ0.2 = 260 MPa,σb = 320 MPa,and δ = 18%.  相似文献   

3.
Extrusion treatment is a common method to refine the grain size and improve the mechanical properties of metal material. The influence of hot extrusion on microstructure and mechanical properties of AZ31 magnesium alloy was investigated. The results ,show that the mechanical properties of AZ31 alloy are obviously improved by extrusion treatment. The ultimate tensile strength (UTS) of AZ31 alloy at room temperature is measured to be 222 MPa, and is enhanced to 265.8 MPa after extrusion at 420℃. The yield tensile strength (YTS) of AZ31 alloy at room temperature is measured to be 84 MPa, and is enhanced to 201 MPa after extrusion at 420℃. The effective improvements on mechanical properties result from the formation of the finer grains during extrusion and the finer particles precipitated by age treatment. The features of the microstructure evolution during hot extruded of AZ31 alloy are dislocation slipping on the matrix and occurrence of the dynamic recrystallization.  相似文献   

4.
The effects of process parameters on the microstructural evolution, including grain size and volume fraction of the α phase during hot forming of a TC6 alloy were investigated using compression tests. Experiments were conducted on the material with (α β) phases at deformation temperatures of 800, 860, 920, and 950℃, swain rates of 0.001, 0.01, 1, and 50 s^-1, and height direction reductions of 30%, 40%, and 50%. After reaching a peak value near 920, the gram size and volume fraction decrease with further increase of deformation temperature. The strain rate affects the morphologies and grain size of α phase of the TC6 titanium alloy. At a lower strain rate, the effect of the swain rate on the volume fraction is greater than that at a higher swain rate under the experimental conditions. The effects of the swain rate on the microstructure also result from deformation heating. The grain size of the α phase increases with an increase in height direction reduction after an early drop. The effect of height direction reduction on the volume fraction is similar to that of the grain size. All of the optical micrographs and quantitative metallography show that deformation process parameters affect the microstructure during hot forming of the TC6 alloy, and a correlation between the temperature, strain, and strain rate appears to be a significant fuzzy characteristic.  相似文献   

5.
Microstructural evolution and the change in hardness during creep deformation of NF709 austenitic stainless steel were investigated.Creep tests were carried out at 650 ℃ for 2932 h under a load of 210 MPa for comparison with aging specimen at 650 ℃ for 3000 h.The hardness results indicated that applied stress during creep process induced hardness increase.Analysis of longitudinal section microstructure showed that the creep damage caused by pores and the grain boundary hardening caused by elongated grains c...  相似文献   

6.
In the present study, creep properties of as-cast Mg-5Al-5Ca-2Sn(AXT552) alloy were investigated by means of a GWT304 creep testing machine at temperatures of 175 °C and 200 °C in the stress range of 35-90 MPa. Results show that creep rates increase with applied stress at an identical temperature. Creep strain at 100 hours is 0.0518% and 0.083% at creep conditions of 175°C/75 MPa and 200°C/60 MPa, respectively, which is comparable to MRI230 D and much lower than most of AX series alloys. By the observation and analysis for samples before and after creep tests using a Shimadzu XRD-7000 type X-ray diffractometer(XRD) and a Hitachi S-3400 N type scanning electron microscope(SEM), it was found that Al_2Ca(C15) phase precipitated out of C36 phase or matrix. The cavity formation and connection at the interface of soft matrix and hard intermetallics caused the propagation of cracking along the eutectic phase during creep process and dislocation accommodated grain/phase boundary sliding is expected to be the dominant creep mechanism.  相似文献   

7.
The effect of deformation behavior on the in vitro corrosion rate of Mg–2Zn–0.5 Nd alloy was investigated experimentally after uniaxial tensile and compressive stress. The microstructure and texture were characterized using electron backscattered diffraction and X-ray diffraction, while potentiodynamic polarization and immersion tests were used to investigate the corrosion response after deformation. The result reveals that applied compressive stress has more dominant effect on the corrosion rate of Mg–2 Zn–0.5 Nd alloy as compared to tensile stress. Both tensile and compressive strains introduce dislocation slip and deformation twins in the alloy, thereby accelerating the corrosion rate due to the increased stress corrosion related to dislocation slips and deformation twins. The {10ī2} tension twinning and prismatic slip were the major contributors to tensile deformation while basal slip, and {10ī2} tension twin were obtainable during compressive deformation. The twinning activity after deformation increases with the plastic strain and this correlates with the degradation rate.  相似文献   

8.
Effects of microstructure on creep behavior of Mg-5%Zn-2%Al(-2%Y) alloy   总被引:2,自引:0,他引:2  
Creep tests of Mg-5%Zn-2%Al(-2%Y) (mass fraction) alloy were carded out at 175 ℃ under the load of 50 MPa, on the cast and solution condition, respectively. Relationship between the creep behavior and microstructure was studied by the optical microscopy, SEM and TEM. The result shows that the primary creep strain is relative to the thermo-stability and the quantity of intermetallic compounds in grain boundary area. During the secondary creep period, the minimum creep rate of solution-treated specimens is substantially decreased as a result of dynamic MgZn2 precipitation.  相似文献   

9.
The solution-treated Mg-4Y-4Sm-0.5Zr alloy was extruded at temperatures from 325℃ to 500℃.Dynamic recrystallization(DRX) completely occurs when the alloy is extruded at 350℃and above.The grains of the extruded alloy are obviously refined by the occurrence of DRX.The average grain size of the extruded alloy increases with increasing the extrusion temperature,leading to a slight decrease of the ultimate tensile strength(UTS) and the yield strength(YS) .On the contrary,the UTS and YS of the extruded and aged alloy increase with increasing the extrusion temperature.Values of UTS of 400 MPa,YS larger than 300 MPa and elongation(EL) of 7%are achieved after extrusion at 400℃ and ageing at 200℃ for 16 h.Both grain refinement and precipitation are efficient strengthening mechanisms for the Mg-4Y-4Sm-0.5Zr alloy.  相似文献   

10.
Solution and aging treatments are important approaches to improve mechanical properties and microstructure of aluminum-base alloys. In this research, a new type high strength AI-Cu-Si-Mn cast alloy was prepared. The effect of different solution and aging treatment temperatures on microstructure and mechanical properties of the AI-Cu-Si-Mn cast alloy were studied by means of microstructure observation and mechanical properties testing. Results showed that after solution treated at different temperatures for 12 h and aged at 175 ℃ for 12 h, with the increase of the solution temperature, both the tensile strength and the elongation of the alloy firstly increase and then decrease, and reach their peak values at 530 ℃. When the solution temperature is below 530 ℃, the microstructure of the alloy consists of a phase, undissolved e phase and T phase; while when it exceeds 530 ℃, the microstructure only consists of cr phase and T phase. After solution treated at 530 ℃ for 12 h and aged at different temperatures for 12 h, both the tensile strength and the elongation of the alloy firstly increase and then decrease with the increasing of temperature, and reach their peak values at 175 ℃. Therefore, the optimal heat treatment process for the alloy in this study is 12 h solution at 530 ℃ and 12 h aging at 175 ℃, and the corresponding tensile strength is 417 MPa, elongation is 4.0%.  相似文献   

11.
High temperature tensile properties and microstructure evolutions of twin-roll-cast AZ31B magnesium alloy were investigated over a strain rate range from 10-3 to 1 s-1.It is suggested that the dominant deformation mechanism in the lower strain rate regimes is dislocation creep controlled by grain boundary diffusion at lower temperature and by lattice diffusion at higher temperatures,respectively.Furthermore,dislocation glide and twinning are dominant deformation mechanisms at higher strain-rate.The processing map,the effective diffusion coefficient and activation energy map of the alloy were established.The relations of microstructure evolutions to the transition temperature of dominant diffusion process,the activation energy platform and the occurrence of the full dynamic recrystallization with the maximum peak efficiency were analyzed.It is revealed that the optimum conditions for thermo-mechanical processing of the alloy are at a temperature range from 553 to 593 K,and a strain rate range from 7×10-3 to 2×10-3 s-1.  相似文献   

12.
Deformation and texture evolution of AZ31 B magnesium(Mg) alloy sheet under uniaxial tension, compression, and reverse loading after different pre-strain(compression and tension) were investigated experimentally. The results indicate that the pre-compressive strain remarkably affects the reverse tensile yield stress and the width of the detwinning-dominant stage during inverse tension process. Similar to stress–strain curve of the uniaxial compression, the curve of reverse tensile yield value also has ‘S' shape, and its minimum value is only 38 MPa. The relationship between pre-compressive strain and the width of detwinning-dominant stage presents a linear growth, and the greater the precompressive strain is, the smaller the strain hardening rate of the detwinning-slip-dominant stage is. Compared with the reverse tension under pre-compression, the influence of the pre-tension deformation on the deformation mechanism of subsequent compression is relatively simple. With the increase in pre-tension strain, the yield stress of the reverse loading is rising.  相似文献   

13.
High temperature tensile ductilities and deformation mechanisms of an extruded and rolled AZ31 Mg alloy were investigated.Elongation-to-failure tests were conducted under constant T-head velocity and constant temperatures ranging from 300℃ to 450℃.Strain-rate-change tests were conducted under varying strain rate from 5×10-5s-1to 2×10-2s-1and constant temperature from 300℃ to 450℃.Experimental results show that the maximum elongation of the AZ31 alloy with an average grain size of about 19μm is 117%at strain rate of 10- 3s-1 and temperature of 450℃.Stress exponent and activation energy were characterized to clarify the deformation mechanisms.The enhanced ductility is dominated by solute drag dislocation creep,and the major failure mechanism is cavity growth and interlinkage.  相似文献   

14.
The mechanical properties and microstructure of an Fe-base superalloy GH35A have been examined after aging at 650—750℃ for 100—10000 h.The tensile strength of the alloy changes no more with aging temperature and the time at room temperature,but the ductility and impact toughness at room temperature,as well as the stress-rupture life up to 700℃ de- crease slowly during aging up to 10000 h The initiation time to worsen its properties becomes shorter as the aging temperature rises.The variation of the mechanical properties of the alloy was found mainly depending on the formation,morphology,distribution and characteristic of the σ-phase precipitation.  相似文献   

15.
In this study,isothermal compression tests were conducted at a Gleeble-1500 simulator at deformation temperatures ranging from 1073 to 1283 K,strain rates ranging from 0.01 to 5.00 s~(-1),and height reductions ranging from 20%to 60%.The flow stress and apparent activation energy for deformation and constitutive equation were used to characterize the deformation behavior of TC21 alloy during the isothermal compression.The processing maps combined microstructure observations were established based on dynamic material model(DMM) over a range of strain rates and temperatures.The results show that an initial yield drop is observed above 1203 K or at higher strain rates ranging from 1.00 to 5.00 s~(-1),and oscillatory flow curves are presented particularly at a strain rate of 5.00 s~(-1).Strain has some influence on the apparent activation energy for deformation during the isothermal compression of TC21 alloy.The Q-values and microstructure observation confirm that dynamic recrystallization(DRX) occurs in the β single-phase region.The constitutive equation during the isothermal compression of TC21 alloy is developed using the Zener-Hollomon parameter in the exponent-type equation.The maximum and minimum relative errors between the calculated and the experimental flow stress are 14.1%and 0.3%,respectively.The peak efficiency of power dissipation at a strain of 0.7 is about 0.51 occurring at a deformation temperature of 1073 K and strain rate of 0.01 s~(-1),corresponding to an optimal deformation condition of TC21 alloy.  相似文献   

16.
The Mg-6.5Gd-1.3Nd-0.7Y-0.3Zn alloy ingot and sheet were prepared by casting and hot extrusion techniques,and the microstructure,age hardening behavior and mechanical properties were investigated.The results show that the as-cast alloy mainly containsα-Mg solid solution and compounds of Mg5RE and Mg24RE5(RE=Gd,Y and Nd)phases.The grain size is refined after hot extrusion,and the Mg5RE and Mg24RE5 compounds are broken during the extrusion process.The extruded alloy exhibits remarkable age hardening response and excellent mechanical properties in the peak-aging state.The ultimate tensile strength,yield strength and elongation are 310 MPa,201 MPa and 5.8%at room temperature,and 173 MPa,133 MPa and 25.0%at 300℃,respectively.  相似文献   

17.
The effects of Ca addition on the as-cast microstructure and mechanical properties of the Mg-5Zn-5Sn (mass fraction,%) alloy were investigated.The results indicate that an addition of 0.5%-1.5% (mass fraction) Ca to the Mg-5Zn-5Sn alloy not only refines the as-cast microstructure of the alloy but also causes the formation of the primary and/or eutectic CaMgSn phases with high thermal stability;an increase in Ca amount from 0.5% to 1.5% (mass fraction) increases the amount and size of the CaMgSn phase.In addition,Ca addition to the Mg-5Zn-5Sn alloy improves not only the tensile properties at room temperature and 150 ℃ but also the creep properties.Among the Ca-containing Mg-5Zn-5Sn alloys,the one added 0.5% (mass fraction) Ca obtains the optimum ultimate tensile strength and elongation at room temperature and 150 ℃,however,the alloy added 1.5% (mass fraction) Ca exhibits the optimum yield strength and creep properties.  相似文献   

18.
The microstructure,tensile properties at 20—950℃ and creep rupture properties at 700-900℃ in a Ni_3Al-Fe based alloy after high temperature deformation have been studied.Theresults show the microstructure of the alloy is composed of γ′-and β-phases.The grain sizeand yield strength of the alloy is stable when the temperature≤600℃,and it is ductile athigh temperature.The creep of the alloy at 700—900℃ is controlled by the climbing of dislo-cations,and the activation energy for creep is 439 KJ/mol with a stress exponent of 4.  相似文献   

19.
The effects of small amounts of cerium and antimony additions on the microstructure and the mechanical properties of AZ91D(Mg-9Al-Zn) based alloy were researched via the expendable pattern casting(EPC) process.The results show that the microstructure is obviously refined and the tensile strength of the AZ91D based alloy at ambient temperature is significantly improved.When compared to AZ91D,the AZ91D-1.0?-0.4%Sb alloy has higher ultimate tensile strength and elongation.Its ultimate tensile strength and elongation are enhanced by 39% and 47%,respectively.The morphology of the tensile fracture of the AZ91D-1.0?-0.4%Sb alloy has more characteristics of quasi-cleavage.This indicates that it has had a larger plastic deformation before failure.The tensile strength and elongation decrease with the increase of Ce and Sb contents because of the coarsening and volume increase of CeSb and Al11Ce3 phases.  相似文献   

20.
Creep Behaviors of DA Casting and Rolling GH4169 Superalloy   总被引:1,自引:0,他引:1  
After the billet of Casting and Rolling GH4169 alloy was directly aged (DA) treated at 720 ℃ and 620 ℃, creep behavior and deformed features of the alloy were investigated by means of the measurement of creep curves and microstructure observation. Results show that the DA Casting and Rolling GH4169 Superalloy displays a lower strain rate during creep and longer lifetimes under the condition of the applied stress of 700 MPa at 650 ℃ , the creep lifetimes of the alloy decrease to 127 h as temperature is eleva...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号