首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
ZrCp/W复合材料组织结构与室温力学性能   总被引:1,自引:0,他引:1  
用XRD、SEM和TEM研究了ZrC颗粒增强钨基复合材料(ZrCp/W,ZrCp的体积分数为30%)的组织结构。由于ZrCp的加入,阻碍了钨晶粒在烧结时的长大,W向ZrC晶格扩散,在ZrC中形成(Zr,W)C固溶体,Zr也向W中发生了少量扩散,使ZrCp/W界面形成冶金结合。在复合材料中还存在很少量的W2C和ZrO2。室温下,复合材料的韧性、弹性模量和硬度都明显比纯钨高,但复合材料的抗弯强度比纯钨低。复合材料的韧化机制是裂纹偏转和细晶韧化。  相似文献   

2.
采用放电等离子体烧结技术制备了以难熔金属钼为界面涂层的连续钨纤维增韧钨复合材料,研究复合材料拉伸脆-韧转变温度,分析和探讨钼涂层在复合材料断裂中的作用以及对Wf/W复合材料断裂模式的影响。结果表明:复合材料在400℃及以下均发生脆断,从400℃开始,纤维与基体界面出现曲形裂纹,涂层有减弱钨基体和钨纤维界面结合强度的迹象。500℃时复合材料出现韧性断裂,韧性主要来源于纤维带来的伪韧性。钼作为界面涂层有助于发动纤维脱粘-韧断增韧机制,但涂层本身由于特殊结构取向并无预期的钼塑性变形带来增韧贡献。同时开展了Wf/W复合材料的瞬态热冲击测试,高强韧、低韧脆转变温度(DBTT)的钨纤维比粗晶基体更能抗热冲击损伤。  相似文献   

3.
采用机械球磨和放电等离子烧结法(SPS)制备了W-0.5wt.%ZrC-(1, 3)wt.%Re(WZC1R,WZC3R)和W-0.5wt.%HfC-(1, 3)wt.%Re(WHC1R,WHC3R)四种钨基材料,并对其微结构、力学性能和高温稳定性进行了测试与分析。WZC3R合金在500 ℃时的极限抗拉强度(UTS)高达728 MPa,600 ℃时UTS维持653 MPa,比SPS制备的纯W提升近2.1倍。弥散分布的纳米尺寸ZrC颗粒起到钉扎晶界和位错的作用,提升材料强度,此外抑制晶粒粗化带来细晶强化。WHC3R在400 ℃时,其延伸率为13.9%,韧脆转变温度(DBTT)介于300 和400 ℃,比SPS制备的W-ZrC和纯W分别降低200 ℃和300 ℃。固溶元素Re通过增加可动滑移面的数量,降低引发塑性变形所需的临界应力,从而改善钨材料的韧性。SPS制备的四种钨基材料展现出优异的热稳定性,1600 ℃真空退火1小时后,试样的晶粒尺寸和维氏显微硬度均未显著变化。其原因是Re溶质原子使钨产生晶格畸变,抑制高温下钨原子的扩散,阻碍晶界迁移,减缓钨晶粒粗化的动力学过程,从而提升材料的高温稳定性。  相似文献   

4.
对锻造态非调质钢35MnVN进行1000℃以下的正火处理可有效地改善材料的韧性,强度稍有损失,是可取的韧化处理方式之一。  相似文献   

5.
钨基复合材料因其优良的性能逐渐取代碳基材料和铍等,成为最有可能应用于国际热核聚变实验堆中面向等离子体材料,但其存在低温脆性、再结晶脆化、辐照脆化和燃料粒子滞留等问题。目前,主要是从合金化、第二相颗粒弥散强化以及制备超细晶(UFG)/纳米晶钨基材料等方面来改善钨及其复合材料的性能。合金化是最常用的改善合金性能的手段之一,合金元素或扩散溶解于钨基体中,或作用于缺陷和杂质,改变钨基材料的组织结构从而提高其性能。综述主要介绍合金元素在钨合金中性能提升和作用机理,同时也指出合金元素改善钨合金性能方面存在的问题、可能的改善措施以及未来的发展趋势。  相似文献   

6.
轻核聚变反应产生的核能是解决能源问题的有效途径。但核聚变堆中材料的工作环境苛刻,钨凭借其优异性能成为今后核聚变装置中最有前途的备选材料,然而纯钨用于聚变堆时,存在韧脆转变温度较高、再结晶温度低、辐照硬化和脆化以及难加工等问题。因此,引入钨基材料以达到解决上述问题的目的。在此基础上,介绍了钨和钨基材料在等离子体辐照、高热负荷以及高能中子辐照作用下的损伤行为,讨论了损伤机理,并指出了尚需研究的若干关键问题。  相似文献   

7.
以高能球磨态90W-10(Ni-Cr-Fe-Si-B)(质量分数,%)混合粉末为钎料中间层,分别采用1000、1050和1100℃,均保温60 min并加压5 MPa的工艺参数,对纯钨(W)和0Cr13Al钢进行真空扩散钎焊连接。利用激光粒度分析仪、SEM、EDS和电子万能试验机等研究混合粉末形态、接头的微观组织、成分、力学性能及断口特征。结果表明:接头中的混合粉末中间层通过液相烧结过程,实现钨与钢的扩散钎焊连接,并在接头中生成均匀致密的钨基高密度合金层。高能球磨制备混合粉末对钨基高密度合金层压力下的均匀化与致密化生成具有关键作用。连接温度越高,钨基高密度合金层的液相烧结组织特征越明显。钨/钢接头剪切强度在125~130 MPa之间,断裂均发生在钨基高密度合金层/钨母材的结合区,断口主要呈现为钨母材的脆性沿晶断裂和钨基高密度合金层粘结相与钨颗粒相的韧性脱离断裂。  相似文献   

8.
《塑性工程学报》2015,(3):103-106
通过仪器化冲击试验方法评价了第三代汽车用高强钢QP980不同温度下的冲击韧性,并获得了其韧脆转变温度。使用预应变模拟冲压成形过程,评价了塑性变形对其低温韧脆特性的影响。结果表明,塑性变形会降低材料的冲击韧性,提高韧脆转变温度,预应变水平越高,其低温韧性下降越明显。  相似文献   

9.
刘豪  龙海川  郑鹏飞  邱长军  陈勇 《表面技术》2022,51(8):168-178, 213
重点综述了国内外关于氧化物或碳化物作为强化相的钨基面向等离子体材料的力学性能、氢滞留特性以及辐照损伤,发现制备工艺和强化相含量是影响钨基面向等离子体材料力学性能的主要方面,而均匀分散的强化相颗粒所致使的组织致密化程度更高是钨基材料力学性能提高的主要因素。其次,阐述了晶界和晶内的强化相颗粒分散不均表现出的位移损伤、气泡、绒毛、微裂纹等缺陷都将增加材料对氢同位素的捕获几率,以及等离子体辐照造成的脆化硬化将降低材料的抗热冲击性能。最后分析了近些年弥散强化钨基面向等离子体材料存在的关键基础问题,展望了未来弥散强化钨基材料的主要发展趋势,期望为开发优异的抗高热负荷和辐照损伤的钨基材料方面提供重要参考。  相似文献   

10.
微量La2O3对钼的韧化作用   总被引:10,自引:4,他引:10  
研究了添加La2O3后钼的韧性及其韧化机制.借助于拉伸、弯曲方法测定了Mo-La2O3材料的断裂韧性KⅠC和韧脆转变温度(DBTT),并用SEM、TEM、AES等方法对Mo-La2O3材料的变形、断裂特征和组织结构进行了分析.研究结果表明:烧结态Mo-La2O3材料的KⅠC值达到24.76MPa·m1/2,是纯钼的2.5倍多,而且高于热锻空冷态TiC-ZrC-Mo钼合金.经1900℃退火的Mo-La2O3板,其韧脆转变温度降低至-60℃,较同样状态的纯钼板降低了80℃,故La2O3对钼具有显著的韧化效果.AES结果表明,添加La2O3并不改变C、N、O等致脆杂质在钼晶界上的分布状态.Mo-La2O3材料的韧化主要归因于其抗裂纹扩展能力的提高,而这与La2O3粒子改变钼中的位错分布及组态有关.并提出了一种新的韧化机制—硬脆第二相的韧化机制,能很好解释实验结果.  相似文献   

11.
为了提高W-5Re合金的室温强韧性,采用电弧熔炼法通过添加SiC制备高性能的W-5Re-xSiC复合材料,并研究SiC添加量(05%4%,质量分数)对W-5Re-xSiC复合材料的微观结构和力学性能的影响规律。结果显示,W-5Re-xSiC复合材料主要由W(Re)固溶体相、W2C和W5Si33相组成。随着SiC添加量的增加,基体晶粒细化,脆硬性的金属间化合物含量增加;W-5Re-xSiC复合材料的强韧性先提高后降低。当SiC添加量为1%时,在基体的细晶强化和W5Si3韧化的共同作用下,W-5Re-1SiC复合材料的强韧性最佳,抗压强度为1859 MPa,断裂应变为32.87%。  相似文献   

12.
SiC颗粒弥散强韧化Si3N4陶瓷刀具材料   总被引:2,自引:1,他引:2  
对SiC颗粒弥散强度韧化氮化硅陶瓷刀具材料的组成,结构及性能进行了研究,结果表明,SiC颗粒的加入使材料的温度,韧性及硬度匀比纯Si3N4陶瓷有显著提高,通过对其显微结构的分析,发现SiC颗粒的加入使材料的显微结构明显改善能有效地阻止β-Si3N4晶粒的异常生长,有利于形成的均匀细小的组织结构,同时,对SiC颗粒在Si3N4基体中的增韧机理进行了探讨。  相似文献   

13.
叙述了钨基合金在铝合金液中的抗蚀性试验情况。结果表明,钨基合金对铝合金液的抗蚀性能比3Cr2W8V钢和45号钢高,在640-740℃的温度范围内提高达10倍以上,所以钨基合金可用来做深腔或在浇道开设时不能避免合金液冲刷型面的模具材料,对形状复杂的薄壁件则更为有利。  相似文献   

14.
对目前国内外以金属间化合物Ni3Al、FeAl、Fe3Al为粘结相的碳化钨基硬质合金的制备方法和性能特点进行了综合评述,重点介绍了硬质合金国家重点实验室在以Ni3Al为粘结相碳化钨基硬质合金方面的最新研究成果及应用情况。结果表明:均匀细小的金属间化合物预合金粉末的制备以及适当控制界面反应是粉末冶金法制备碳化钨/金属间化合物硬质合金的有效方法。碳化钨/金属间化合物硬质合金的研究方向应集中在界面问题、金属间化合物粘结相的韧化、制备工艺和综合性能评价体系的建立等几个方面。  相似文献   

15.
在对含Pd的Ni3Al合金进行成键特征分析基础上,用已建立的理论模型解释了Pb韧化Ni3Al的微观机制。Pd在Ni3Al中占据Ni原子位置,其成键电子的离域程度远大于Ni原子,可有效地削弱共价键的方向性而强化晶界结合力,改善多晶Ni3Al的韧性。偏离化学计量比对Pd韧化Ni3Al效果的影响,是因为Pd-Ni键较Pd-Ni键强。降低Al含量可增加离域的成键电子数,有利于Ni3Al的韧化。  相似文献   

16.
综述了国内外广泛研究的W-La2O3和W-TiC合金的制备工艺、力学性能和辐照性能的研究进展。结果表明:向钨基体中加入La2O3弥散相,虽然能够显著改善钨的强度和韧性,但使钨的抗辐照性能降低,氢泡密度和氢滞留量明显增加;当采用TiC纳米颗粒作为弥散相,经过热等静压烧结和塑性加工后,钨合金的抗弯强度达到4.4 GPa,再结晶温度高于2 473K,韧脆转变温度(DBTT)比纯钨的低100 K;TiC的加入能够显著提高钨的抗辐照性能,与纯钨相比,氚滞留量减小,没有明显的辐照硬化,材料表面没有裂纹和剥落。  相似文献   

17.
钨(W)具有高熔点(3410℃)、高密度(19.35 g/cm~3)、高硬度、高弹性模量、高热导率以及低膨胀系数、低蒸气压等优异的性能,在国防军工、航空航天和核工业等领域中有着重要的作用。但同时,W及其合金的缺点,如低温脆性(韧脆转变温度通常在400℃以上)、室温抗拉强度低,再结晶脆性、高热负荷开裂及辐照脆化等问题,又严重影响了其加工及服役性能。针对上述问题,国内外开展了碳化物/氧化物弥散强化的钨合金研究,通过纳米级碳化物/氧化物弥散强化及微结构优化,提高了W的力学性能及其它服役性能。本文主要从核聚变第一壁用碳化物、氧化物弥散强化钨基材料的设计、制备、组织与性能调控及服役性能评价等方面进行综述,并介绍了作者研发团队的最新进展,展望了未来发展趋势及待解决的问题。  相似文献   

18.
受控热核聚变能作为一种清洁且原材料丰富的终极理想能源,被认为是未来能够有效解决能源问题的主要途径。而在实际聚变反应过程中,面向等离子体材料(plasma facing materials,PFMs)需要面临极其苛刻和恶劣的环境。W及其合金是目前最具有应用前途的PFMs的候选材料,但由于其低温脆性、再结晶脆性和辐照脆化等性能方面的不足,还不能达到PFMs的使用要求。本文对W及其合金在不同辐照粒子下的损伤行为的机制进行了详细阐述,并对相关领域近年来的研究进展进行了综合评述和展望,旨在为后期钨基材料辐照方面的研究提供参考。  相似文献   

19.
研究了以正火态粒状贝氏体为前组织的25Cr2MoV钢,经亚温正火后,显微组织与性能的变化。试验结果表明,以粒状贝氏体为主的正火态组织,韧性甚差(室温冲击值仅22J);增加一道亚温正火工序后,在近乎等强度的条件下,可将其室温冲击值提高三倍以上,并使韧脆转变温度降低,而且韧化的效果在渗氮后依然能保持.对其韧化机理进行了探讨,认为组织的细化和马氏体岛含碳量的降低共同对提高钢材的韧性作出了贡献.  相似文献   

20.
正低合金钢焊接特性及焊接材料尹士科、王移山著内容分为两个方面:一是实用性内容,包括国内外几十个钢材及其配套焊接材料的化学成分和力学性能数据,某些低合金钢焊接热影响区及焊接接头的抗断裂性能和抗裂性能试验结果,焊接这些钢种应采用的焊接规范参数等;二是理论方面的内容,包括钢材的强韧化机制、焊缝金属的相变知识、含氧量对组织和性能的影响;在焊材研发方面,重点放在了提高焊缝韧性上,韧化途径有针状铁素体韧化、钛—硼复合韧化等。针对与焊接施工相关的问题,如扩散氢的逸出行为、焊接气孔的成因等也作了理论性探讨。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号