首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用OM、SEM、EDS、相分析、硬度测试和冲击性能试验等分析手段,对比研究Nb含量为0、0.067%和0.270%(质量分数)的H13试验钢淬回火后的组织及力学性能。结果表明,加入Nb后试验钢淬火硬度有所下降;淬火温度提高后,含Nb试验钢的晶粒尺寸小于0Nb试验钢,但含Nb试验钢中存在部分未溶碳化物;3种试验钢回火后的二次硬化峰均出现在510 ℃。经1050 ℃淬火、不同温度回火后,0.067Nb试验钢的冲击吸收能量高于0Nb试验钢。0.27Nb试验钢受到大尺寸碳化物的影响,淬火温度在1080 ℃以下时,冲击吸收能量不及另两种试验钢。  相似文献   

2.
通过光学显微镜(OM)、扫描电镜(SEM)和冲击试验等分析手段,对不同淬、回火热处理条件下的冷作模具钢GYCRF的组织和性能进行了研究。结果表明:GYCRF钢淬火后存在含Nb、Mo和V等合金元素的碳化物,1080~1120℃是最佳的淬火温度范围;在520℃回火时存在二次硬化峰,回火组织中主要为富含Nb、V等合金元素的MC型碳化物和以Cr元素为主的M_(23)C_6型碳化物;与常用冷作模具钢DC53相比,由于淬火前MC碳化物中Nb部分替代了V,在合金质量比一定的前提下,Nb的加入使得V含量相对降低,造成基体中固溶的V元素和回火时MC型碳化物析出量相对减小,回火硬度降低,冲击韧性高于DC53钢。  相似文献   

3.
研究了65Nb钢的组织及力学性能。结果表明,在1080℃以上淬火时,65Nb钢出现二次硬化现象,峰值温度为540~560℃,且淬火温度越高,回火硬度越高。在1110℃油淬,得到隐晶或细针马氏体和剩余碳化物组织,500~600℃回火后硬度达到56~62HRC。  相似文献   

4.
采用SEM、TEM以及拉伸测试等研究SCM435钢在870℃淬火、350~650℃回火后的组织和力学性能。结果表明,回火温度为350℃时,其组织是板条马氏体及少量碳化物;随着回火温度的升高,马氏体的板条形态逐渐消失,碳化物沿板条方向析出长大,其中525℃回火后的组织尚有明显的马氏体板条形态并弥散分布着短棒状渗碳体。在试验回火温度范围内调控SCM435钢的力学性能,可以满足8.8~12.9级紧固件的力学性能要求。试验验证了870℃淬火+525℃回火钢的疲劳性能,中值疲劳极限σa50为425 MPa,具有较好的疲劳性能。  相似文献   

5.
为了优化50MnB钢热处理工艺,设计了水淬、盐水淬和油淬三种淬火冷却方式以及180、200、220 ℃三种不同回火温度。通过组织观察、力学性能测定、断口形貌观察、XRD物相分析探讨淬火方式和回火温度对50MnB钢组织性能的影响。结果表明,油淬是适宜的淬火方式,淬火组织均匀;回火组织由回火马氏体和少量碳化物组成,回火后仍保留马氏体板条形态。随着回火温度的升高,回火组织中的马氏体板条更细小,碳化物析出增加。同时,硬度和抗拉强度降低,伸长率增加。根据组织与性能试验结果,最适合的回火温度是220 ℃。  相似文献   

6.
通过显微组织观察、拉伸试验、冲击试验和洛氏硬度试验等方法,研究了GCr15轴承钢终热处理工艺中回火温度对其组织与力学性能的影响。结果表明:在本试验条件下,淬火态GCr15钢试样组织主要由淬火马氏体、残余奥氏体及碳化物组成。在440~760℃温度范围内,随着回火温度的升高,GCr15钢试样组织中不断有碳化物析出并聚集,残余奥氏体逐渐分解。GCr15钢试样经830℃×30min油淬+520℃×2h回火终热处理后,其硬度为48.3HRC,抗拉强度为1536MPa,伸长率为13.5%,断面收缩率为47.8%,GCr15钢的综合性能优良,达到渗碳工艺处理G20Cr2Ni4A钢性能水平。  相似文献   

7.
通过热模拟试验得到55SiCrV钢的CCT曲线和奥氏体晶粒长大曲线,确定了淬火温度选择范围;利用双因子正交试验,研究了热处理参数对其力学性能及组织的影响。结果表明:在850~930℃加热温度范围内,Cr、V元素形成难溶碳化物,阻碍晶粒长大;随着温度的提高,55SiCrV钢奥氏体晶粒尺寸基本不变,晶粒度达到10级;加热温度930℃以上时,原子扩散能力增大,且难溶碳化物逐渐溶解,奥氏体晶粒度逐渐粗化。在870~930℃淬火温度范围内,随温度提高,55SiCrV钢抗拉强度先升高后下降;随回火温度提高,强度逐渐降低,塑性提高。900℃淬火+410℃回火工艺下,55SiCrV钢组织为针状铁素体与M_3C碳化物组成的细小回火屈氏体,具有较好的疲劳性能和抗弹减性能。  相似文献   

8.
25Cr3Mo3NiNbZr钢具有优异的高温强度以及良好的低温韧性,是潜在的长寿命压力容器用钢,能够满足日益严苛的服役工况对材料性能的需求。为了获得材料强韧性最佳匹配,研究了淬火温度和回火温度对25Cr3Mo3NiNbZr钢组织及力学性能的影响,结果表明:随着淬火温度由950℃提高到1 050℃,25Cr3Mo3NiNbZr钢中粗大的M_6C类碳化物回溶量持续增加,MC类碳化物质量分数基本保持不变。MC碳化物具有高温稳定性,可抑制1 050℃淬火晶粒长大。25Cr3Mo3NiNbZr钢回火后组织为回火索氏体,随着回火温度的升高,碳化物类型由M_3C转变为M_2C,在650~700℃析出M_6C类型碳化物,纳米级M_2C碳化物在550℃大量析出,是25Cr3Mo3NiNbZr钢产生二次硬化峰值强度的主要原因。  相似文献   

9.
采用显微组织观察、拉伸试验、冲击试验和硬度测试等方法,研究了4Cr5Mo2NiV模具钢淬火、回火工艺对其显微组织与力学性能的影响。结果表明:淬火态4Cr5Mo2NiV钢组织主要为板条状、针状马氏体以及少量碳化物。随着淬火温度的升高,4Cr5Mo2NiV钢硬度先升高后降低。1010℃淬火,4Cr5Mo2NiV钢硬度达到最大值58.3 HRC。当回火温度在400~650℃,4Cr5Mo2NiV钢回火后出现二次硬化现象。4Cr5Mo2NiV钢最佳淬、回火工艺为1010℃淬火+600℃回火,此工艺下,4Cr5Mo2NiV钢的综合性能最佳。  相似文献   

10.
通过同一种钢在不同淬火条件(20及37℃水淬)下的试验比较,研究了淬火温度对回火后钢性能的影响.对试验钢分别进行淬火温度为880、940℃的一系列淬火试验及回火试验.结果发现,不同淬火温度及在20℃水淬条件下,φ26mm的试验钢均可淬透;当水温为37℃时经400℃回火,可获得良好的综合力学性能.  相似文献   

11.
高朋  高野  陈俊  刘振宇  卓越 《金属热处理》2019,44(10):72-76
采用OM、SEM、TEM研究了1000 MPa级高强钢在直接淬火条件下550~670℃范围内回火后的组织和性能。结果表明,在550℃至610℃之间回火时,马氏体板条开始回复,碳化物析出,试验钢组织以回火马氏体为主;在640℃至670℃之间回火时,马氏体板条开始发生再结晶,碳化物逐渐长大,试验钢组织以回火索氏体为主。采用DQ-T工艺生产1000 MPa级高强钢的最佳回火温度区间为610~640℃,此时规定塑性延伸强度为1012~1053 MPa,抗拉强度为1045~1092 MPa,塑性冲击吸收能量为38~39 J,伸长率为17%~19%,断面收缩率为40%~42%,有较好的综合力学性能。  相似文献   

12.
《铸造技术》2016,(10):2092-2094
以发电机水冷壁用高强度钢为研究对象,采用先正火,再淬火,最后回火的热处理工艺对其进行性能优化,分析回火温度对其碳化物析出及对其力学性能的影响。结果表明,当回火温度在400~450℃时,钢中碳化物主要为尺寸较大的M_3C合金渗碳体;当回火温度在450~600℃时,碳化物主要为尺寸较小的弥散分布的M_6C和M_2C;当回火温度达到650℃时,弥散分布的碳化物数量开始减少并发生球化、长大,同时合金钢强度也随回火温度提高逐渐降低,且在高温区间和低温区间回火时强度下降较快。  相似文献   

13.
利用光学显微镜、拉伸试验机等研究了不同淬回火工艺对20MnSi钢显微组织与力学性能的影响。结果表明:经920℃淬火后,20MnSi试验钢的组织为板条状马氏体。当淬火温度升高到960℃时,组织中马氏体发生粗化。在840~960℃,随着淬火温度的升高,试验钢强度先升高后降低,920℃淬火试验钢的强度达到最大值。在420~620℃,随着回火温度的升高,试验钢的强度、屈强比逐渐降低,伸长率逐渐升高。经920℃淬火+420℃回火处理的20MnSi钢强度达到900 MPa,伸长率、屈强比满足使用要求,为理想的淬回火工艺。  相似文献   

14.
通过对M390粉末冶金不锈钢进行不同温度下的平衡相计算和真空气淬+低温回火处理,研究了淬火温度对回火后显微组织和力学性能的影响。结果表明,随着淬火温度的升高,M390钢回火后的碳化物尺寸不断长大,单位面积的颗粒数量减少而所占面积分数提高,碳化物分布均匀性降低。硬度随淬火温度的升高呈先上升后略微下降趋势,在1130 ℃淬火时达到最大值60.2 HRC,回火后降为58.5 HRC。抗弯强度受淬火温度的影响不大,为4000 MPa级水平。为获得良好性能,淬火温度应控制在1200 ℃以下,1130~1180 ℃真空气淬+200 ℃低温回火是刀剪用M390钢的最佳热处理工艺制度。  相似文献   

15.
研究了34CrNiMo6钢经油淬(760~850℃)、回火处理(350~500℃)后的组织与力学性能的变化,结果表明:经760℃油淬,34CrNiMo6钢并未完全的奥氏体化,淬火组织中保留着铁素体与球状珠光体;随着淬火温度升高,淬火组织完全转变成马氏体,并且片状马氏体有所粗化、长大,淬火硬度也不断提高。经相同的工艺淬火处理后,提高回火温度,钢的硬度逐渐下降,冲击功先下降而后快速上升。400℃回火,钢的冲击功最低。当回火温度相同时,淬火温度低的34CrNiMo6钢有着更高的冲击韧性。经780℃油淬+450℃回火处理,34CrNiMo6钢有最佳的强韧性组合。  相似文献   

16.
徐慧  李天生 《金属热处理》2020,45(9):116-120
对Nb微合金化NM500钢经过930 ℃淬火后分别在210、240、270和300 ℃的低温下进行回火,分析了不同回火温度对试验钢组织和力学性能的影响。采用SEM和TEM对不同回火温度下试验钢的微观组织形貌、冲击断口形貌及其强化机理进行了分析。结果表明:在930 ℃淬火,240 ℃回火时试验钢具有良好的综合力学性能,其强化机理为固溶强化、相变强化、沉淀强化和细晶强化的综合作用效果。  相似文献   

17.
利用扫描电镜(SEM)、透射电镜(TEM)等试验方法,对实验室试制NM600耐磨钢热轧后淬火态钢板在不同温度回火后的组织和力学性能进行了观察和测量,研究了回火温度对组织和力学性能的影响。结果表明,热轧淬火态试验钢经回火处理后,随着回火温度的升高,显微组织由板条贝氏体+少量马氏体,逐渐过渡到粒状贝氏体+弥散的碳化物;贝氏体板条和马氏体板条发生溶解,位错密度降低;在温度高于200℃时,贝氏体铁素体板条的溶解,析出的碳化物所产生的强化作用已经不再明显,导致试验钢的各项力学性能出现下降。综合分析可知,试验钢在200℃回火时可获得较为优良的力学性能。  相似文献   

18.
回火温度对汽车用22MnB5钢组织和性能的影响   总被引:2,自引:0,他引:2       下载免费PDF全文
采用光学显微镜、SEM、TEM、万能试验机等对汽车用22MnB5钢150~300 ℃不同温度回火后的组织与性能进行研究。结果表明,22MnB5钢经淬火+回火处理后,组织主要为回火马氏体,在透射电镜下观察到明显的第二相析出,具有良好的抗塑性变形能力。随回火温度的升高,过饱和α相发生回复且析出碳化物,力学性能逐渐下降。在试验温度范围内,150 ℃时22MnB5钢的力学性能达到最佳,抗拉强度与硬度分别为1583 MPa和48 HRC。  相似文献   

19.
为开发出屈服强度1300 MPa级的超高强度工程机械用钢,研究了回火温度对Q1300超高强钢组织和性能的影响规律。结果表明:淬火态钢板经220℃低温回火后,由于淬火应力消除和晶内ε碳化物的析出,试验钢的规定塑性延伸强度和低温冲击性能提高,硬度和抗拉强度下降;当回火温度高于250℃时,板条间的薄膜状残留奥氏体开始析出碳化物,降低晶界结合能,恶化试验钢的冲击韧性,回火温度为450℃时试验钢的冲击性能最差,此后继续增加回火温度,试验钢的冲击性能不断提高;当回火温度在200~300℃范围内变化时,试验钢的规定塑性延伸强度基本保持不变,此后随着回火温度增加,试验钢的规定塑性延伸强度逐渐下降。试验钢在250℃回火时,可以获得最优的力学性能,规定塑性延伸强度1381 MPa,抗拉强度1571 MPa,断后伸长率(A_(25)) 10. 6%,半尺寸试样-40℃的冲击吸收能量达到50 J。  相似文献   

20.
热处理对1Cr16Ni4Nb板组织和力学性能的影响   总被引:1,自引:0,他引:1  
研究了不同温度淬火和回火对一种新型的含铌马氏体耐热不锈钢1Cr16Ni4Nb板微观组织和力学性能变化的影响规律.结果表明:1Cr16Ni4Nb钢在1000~1040℃淬火较合理,在1030℃淬火、300~350℃回火时,组织为均匀细小的回火马氏体,其具有较高的强度和一定的韧性;在1030℃淬火、600~650℃回火时,1Cr16Ni4Nb钢的组织为回火索氏体,其具有较高的综合力学性能.在这两种回火状态下,1Cr16Ni4Nb钢均可以满足不同结构件预期的使用要求.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号