首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
研究了第三代高强度高塑性低碳中锰冷轧TRIP钢的退火工艺对性能的影响和残留奥氏体稳定性。结果表明:临界区退火温度和保温时间对钢的力学性能具有显著影响,退火温度为590℃,保温时间为18 h时,实验用钢6.72%Mn-TRIP可获得815 MPa的抗拉强度和38%的断后伸长率,强塑积30 GPa·%;临界区保温时,C、Mn元素由马氏体配分到新形成的残留奥氏体,使残留奥氏体稳定在室温。大量残留奥氏体以及配分之后的马氏体和发生再结晶的铁素体,使材料具有良好的塑性和强度。  相似文献   

2.
通过奥氏体化预处理、两相区临界退火以及贝氏体等温处理这3个过程制备了含退火马氏体组织的TRIP钢(TAM钢),利用拉伸试验机、扫描电镜、透射电镜以及X射线衍射对其力学性能和微观组织进行了表征,在此基础上研究了奥氏体化预处理温度对力学性能及微观组织的影响规律。结果表明,含退火马氏体组织的TRIP钢,具有良好的断后伸长率和强塑积,尤其是在奥氏体化预处理温度为950℃时,其断后伸长率高达40%以上,强塑积高达27 GPa·%;其微观组织由铁素体、贝氏体、残留奥氏体以及退火马氏体构成,退火马氏体精细结构呈现板条状,板条间存在残留奥氏体;奥氏体化预处理温度对残留奥氏体体积分数没有显著影响,但对最终组织中的退火马氏体体积分数以及晶粒大小有显著影响。  相似文献   

3.
通过奥氏体化预处理、两相区临界退火以及贝氏体等温处理这3个过程制备了含退火马氏体组织的TRIP钢(TAM钢),利用拉伸试验机、扫描电镜、透射电镜以及X射线衍射对其力学性能和微观组织进行了表征,在此基础上研究了奥氏体化预处理温度对力学性能及微观组织的影响规律。结果表明,含退火马氏体组织的TRIP钢,具有良好的断后伸长率和强塑积,尤其是在奥氏体化预处理温度为950℃时,其断后伸长率高达40%以上,强塑积高达27 GPa·%;其微观组织由铁素体、贝氏体、残留奥氏体以及退火马氏体构成,退火马氏体精细结构呈现板条状,板条间存在残留奥氏体;奥氏体化预处理温度对残留奥氏体体积分数没有显著影响,但对最终组织中的退火马氏体体积分数以及晶粒大小有显著影响。  相似文献   

4.
研究了经临界退火和不同温度回火后多相组织低合金钢中残余奥氏体对塑性和韧性的影响.结果表明,实验钢经两相区临界退火和不同温度回火后,获得了临界铁素体、回火马氏体/贝氏体以及体积分数分别为2%,5%,10%的残余奥氏体多相组织.含有不同体积分数残余奥氏体的多相组织钢强度差异不大,其屈服强度介于540~590 MPa,抗拉强度介于720~780 MPa.残余奥氏体含量对塑性和韧性影响显著.随着残余奥氏体含量的增加,实验钢的均匀延伸率和断后延伸率分别从10.3%和23.8%提高到20.4%和33.8%.塑性的提高主要是由于残余奥氏体在拉伸过程中逐步发生马氏体相变,从而提供持续的加工硬化能力,推迟颈缩的发生.残余奥氏体对韧性的改善随着冲击测试温度的降低变得更加显著.冲击温度高于-60℃时,不同体积分数的残余奥氏体实验钢的冲击功均在120 J以上,当冲击实验温度为-80℃时,残余奥氏体含量仅2%的实验钢的冲击韧性仅14 J,而含有残余奥氏体体积分数约10%的实验钢在-80和-100℃的冲击功仍然保持在60~80 J.残余奥氏体的存在有利于提高低温冲击过程中的塑性变形能力,延迟起裂,提高起裂功,从而有利于获得优异的低温冲击韧性.  相似文献   

5.
采用CR+WR+IA(冷轧+温轧+退火)热处理工艺,研究了两相区退火过程中碳化物演变行为及其对0.1C-5Mn钢组织、性能、残留奥氏体体积分数与稳定性的影响。结果表明:冷轧试验钢经温轧退火处理后,获得了超细晶铁素体与残留奥氏体复相组织,其中退火10 min与30 min试样基体上弥散少量碳化物。伴随碳化物的析出与溶解行为,残留奥氏体体积分数出现先降低后升高的趋势;在退火10 min与60 min组织中,受碳化物与新生奥氏体钉扎作用,使得铁素体以小角度取向差为主,而残留奥氏体以大角度取向差为主;高密度位错、TRIP效应、细晶强化以及析出强化为试验钢提供良好的强塑性。  相似文献   

6.
低碳Si-Mn系Q&P钢两相区的退火热处理工艺   总被引:1,自引:0,他引:1  
研究一种新型的两相区不同退火温度的淬火和碳再分配热处理工艺对低碳硅-锰系Q&P钢的显微组织、精细结构的影响,并和奥氏体区退火的Q&P热处理工艺进行对比。通过SEM、TEM分析发现,采用两相区退火的Q&P工艺室温组织为板条马氏体、铁素体和薄膜状残留奥氏体。残留奥氏体以两种形态存在:处于马氏体板条间的薄膜状和位于原奥氏体晶界处的块状。两相区热处理后的Q&P钢,不仅抗拉强度高达1000 MPa以上,其伸长率也高达23%以上,体积分数高达11%的残留奥氏体在组织中起到了相变诱发塑性的作用。  相似文献   

7.
研究了冷轧退火工艺参数对DP780双相钢的显微组织和力学性能的影响。通过调整连续退火工艺来控制显微组织中一次铁素体、二次铁素体、马氏体、残余奥氏体的比例、尺寸、形貌、分布,同时获得了连退工艺参数、显微组织、力学性能的关系。结果表明,在传统冷轧铁素体和马氏体双相钢的组织中有5%~7%的残余奥氏体,不仅可以获得屈强比≤0.5的超低屈强比冷轧DP780型钢,也改善了成形性能。  相似文献   

8.
采用不同的退火工艺得到了多边形铁素体基TRIP钢(TPF)、贝氏体铁素体基TRIP钢(TBF)和回火马氏体基TRIP钢(TAM)3种不同基体结构的TRIP钢,并对它们的显微组织和力学性能进行研究。结果表明,退火工艺的不同导致实验钢的微观组织完全不同,力学性能也存在显著差异。TPF钢的基体结构为尺寸较大的多边形铁素体,其上分布着贝氏体、马氏体及少部分残留奥氏体,抗拉强度和伸长率均低于TBF钢与TAM钢。TBF钢的基体结构为贝氏体铁素体,残留奥氏体呈长条状或块状分布于贝氏体板条间,表现出高强度但伸长率不佳。TAM钢组织由退火马氏体基体、残留奥氏体及新生马氏体组成,残留奥氏体以稳定的长条状或薄膜状分布在退火马氏体晶界处或板条间,具有最佳的力学性能。  相似文献   

9.
为了探索一种冷轧超高强耐候双相钢的连续冷却转变规律以及过时效温度对其组织性能的影响,利用Formaster-FⅡ全自动相变仪和连续退火模拟试验机进行了CCT曲线的测定和连续退火实验。结果表明:实验钢的过冷奥氏体在冷速为0.5 ℃/s时已有马氏体转变的发生,组织为先共析铁素体+贝氏体+马氏体;当冷速为80.0 ℃/s时,仅发生马氏体转变,组织为残留铁素体+马氏体。低温过时效时,马氏体呈板条状结构;过时效温度为350 ℃时,板条马氏体已经出现分解。随着过时效温度的升高,实验钢的屈服强度和抗拉强度呈下降趋势,伸长率则随过时效温度的升高而增加。  相似文献   

10.
在连续退火试验机上,对一种Mn含量介于中锰和低锰含量之间的C-Si-Mn系(0.14C-2.72Mn-1.3Si,质量分数,%)超高强钢进行处理,获得了具有铁素体、淬火马氏体、回火马氏体以及一定量残余奥氏体的多相组织.利用膨胀仪,SEM,TEM,EBSD和XRD等对实验钢在不同热处理工艺下的微观组织进行了表征.结果表明,800℃退火实验钢获得最佳综合力学性能,屈服强度为672MPa,抗拉强度为1333MPa,总伸长率为13%.这主要是800℃退火钢精细的组织、合适的相比例以及一定量残余奥氏体共同作用的结果.对实验钢加工硬化行为进行了深入分析,讨论了实验钢瞬时加工硬化指数n的变化,采用修正的C-J方法对实验钢多阶段加工硬化行为进行了分析,探讨了马氏体结构参数fM/dM(fM为马氏体体积分数,dM为马氏体等效直径)和铁素体体积分数等对加工硬化的影响.结果表明,实验钢颈缩前随真应变增加n快速增加后减小,但不同温度退火实验钢n减小趋势不同;由于不同温度退火实验钢马氏体体积分数不同,经修正后的C-J法分析得到了2阶段和3阶段的加工硬化行为;铁素体体积分数对马氏体与铁素体共同塑性变形的应变范围△e有显著影响,低温时共同变形范围小,高温时范围逐渐增大,过高温度时可能又减小.综上,实验钢高的初始加工硬化率源于各相的配比、形貌和分布等,是各组织协调配合和各因素共同作用的结果,有利于提高实验钢的强度和塑韧性.  相似文献   

11.
采用热模拟试验研究了两相区退火温度对TRIP590钢组织和性能的影响.结果表明:随着两相区退火温度的升高,铁素体体积分数先减少后增加,铁素体平均晶粒尺寸在整个实验温度范围内随着退火温度的升高一直减小;780~860℃范围退火时,残留奥氏体量和残留奥氏体富碳量都在820℃附近出现一个低谷,温度低于或高于820℃,残留奥氏体含量和残留奥氏体富碳量都增加,860℃退火时,残奥量和富碳量都最大;两相区退火温度的变化对抗拉强度基本影响不大,屈服强度随退火温度的变化略有增加,伸长率在820℃出现一个低谷,退火温度低于820℃时,伸长率随退火温度升高而降低,退火温度高于820℃时,伸长率随温度升高而升高,860℃退火时,伸长率达到最大值23%.  相似文献   

12.
DP590的微观组织主要由连续分布的铁素体和弥散分布的马氏体组成,晶粒尺寸约为11μm。这种双相显微组织赋予了DP590优良的力学性能,如低的屈服强度、高的抗拉强度、高的加工硬化和良好的延伸率。扩孔性能是评价钢板冲压成形性能的重要指标。DP590的扩孔性能与其金相组织及力学性能有着密切的关系:在成形过程中其含有的马氏体相使得n值迅速增加,n值越大在变形过程中应力分布越均匀,成形程度越高,扩孔性能越好;但马氏体相的存在又会降低DP590的延伸率,使得扩孔性能相对较差。建立成形极限图,DP590冷轧双相钢的FLD0(平面应变特征点)为30%左右,成形性能良好。  相似文献   

13.
利用扫描电镜及透射电镜、X射线衍射仪和拉伸试验机对采用不同的奥氏体化温度处理后QP钢微观组织和力学性能进行观察及测试分析,探讨了奥氏体化温度对QP钢组织与力学性能的影响。研究结果表明:奥氏体化温度对QP钢最终的组织性能有决定性影响。部分奥氏体化时,QP钢的最终组织为马氏体+残留奥氏体+铁素体;完全奥氏体化时,QP钢的最终组织为马氏体+残留奥氏体。随奥氏体化温度提高,铁素体数量减少,马氏体数量增多,QP钢的强度增加,塑性下降。拉伸过程中,QP钢中发生了残留奥氏体向马氏体转变。  相似文献   

14.
《铸造技术》2015,(5):1174-1176
通过研究汽车用高Si双相钢在连续退火过程中组织及力学性能的变化,重点分析了退火温度对双相钢性能的影响规律。结果表明,试验钢在连续退火后,铁素体晶界上出现均匀分布的岛状马氏体和粒状残余奥氏体组织;随着退火温度的升高,试验钢的抗拉强度先升高后降低,当退火温度为785℃时,钢的综合力学性能较高。  相似文献   

15.
在假设马氏体岛形态和分布的基础上, 采用有限元法计算了粒状组织形成过程中的相变残余应力, 并讨论 了相变残余应力对宏观变形行为的影响. 结果表明: 粒状组织形成过程中, 奥氏体转变为马氏体后将在铁素体基体中产生静水张应力, 而马氏体岛承受压应力作用; 残余应力随马氏体体积分数和铁素体基体强度的增加而增大, 存在临界马氏体体积分数, 此时铁素体完全屈服; 残余应力是导致空冷粒状组织钢出现连续屈服现象的原因之一, 但对屈服强度的影响较小.  相似文献   

16.
研究了快速加热连续退火工艺对V微合金化低Si含P系TRIP钢显微组织特征与力学性能的影响.结果表明,快速连续退火过程中,随着退火温度的升高,拉伸强度增加明显,然而为了保证其综合性能,并不能一味地提高其临界退火温度.加热速率80℃/s,退火温度为880℃时,残余奥氏体形态不仅仅局限于细小的块状结构;而且在贝氏体铁素体板条间能观察到大量的薄膜状残余奥氏体.细小、弥散的V(C,N))分布于铁素体或贝氏体基体中,大部分析出粒子直径在4—9 nm之间,实验钢具有优异的强度与塑性配合:Rm=1010 MPa,RP0.2=690 MPa,δ=23.6%,n=0.27,r=1.17,强塑积达到23836 MPa.%.退火温度过高或过低,都会减少残余奥氏体的体积分数、改变其形貌并增大其尺寸,导致综合力学性能下降.  相似文献   

17.
热镀锌退火温度对DP780组织和性能的影响   总被引:1,自引:0,他引:1  
主要研究了热镀锌退火温度对DP780的组织和性能的影响.利用OM、SEM、TEM等技术对显微组织进行了观察和分析,并结合性能进行了研究.结果表明:随退火温度升高,抗拉强度呈稳定或降低趋势,主要是因为奥氏体的淬透性降低,产生了非马氏体组织,导致马氏体的复相强化作用降低.受非马氏体组织的影响及可动位错密度降低的作用,屈服强度、屈强比随退火温度升高而升高.总体来说,在780~800℃退火,细小弥散的马氏体均匀分布在铁素体中,具有这种组织的钢综合性能良好.  相似文献   

18.
粒状组织的相变残余应力   总被引:1,自引:0,他引:1  
在假设马氏体岛形态和分布的基础上,采用有限元法计算了粒状组织形成过程中的相变残余应力,并讨论了相变残余应力对宏观变形行为的影响.结果表明:粒状组织形成过程中,奥氏体转变为马氏体后将在铁索体基体中产生静水张应力,而马氏体岛承受压应力作用;残余应力随马氏体体积分数和铁素体基体强度的增加而增大,存在临界马氏体体积分数,此时铁素体完全屈服;残余应力是导致空冷粒状组织钢出现连续屈服现象的原因之一,但对屈服强度的影响较小.  相似文献   

19.
王卫卫  刘浏  李光瀛 《轧钢》2019,36(2):31-34
研究了不同退火温度和变形条件对DP780钢残余奥氏体含量、尺寸、稳定性的影响。结果表明,通过优化连续退火工艺参数,可以获得5%~7%稳定的残余奥氏体。随着变形量的增加,90%的残余奥氏体发生了TRIP效应,不仅提高了DP780钢的强塑性,也改善了其成形性能。  相似文献   

20.
韩福广  李岩  赵增武  定巍 《金属热处理》2020,45(12):212-217
采用临界退火热处理工艺,利用场发射扫描电镜(FE-SEM)观察含铌和不含铌的两种热轧中锰TRIP钢在不同退火制度下的碳化物演变行为及铌对中锰TRIP钢微观组织、残留奥氏体体积分数与稳定性的影响。结果表明:试验钢经临界退火处理后获得超细晶铁素体与残留奥氏体复相组织。随着退火温度的提高,残留奥氏体体积分数出现先升高后降低的趋势;随着退火时间的延长,碳化物逐渐溶解,残留奥氏体体积分数逐渐增加,达到平衡后保持不变。Nb元素的加入可细化奥氏体晶粒,延缓碳化物溶解,推迟奥氏体转变,增加膜状奥氏体,提高奥氏体稳定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号