首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
采用热轧加冷旋锻的方式将φ60 mm铪棒坯加工至φ13.3 mm,然后分别在440、600、740、900、1 040℃下保温1 h进行真空退火处理,对比研究了不同退火温度下铪棒的显微组织、室温及高温拉伸性能、高温拉伸断口形貌。结果表明,随着退火温度的升高,晶粒逐渐长大,但孪晶组织并不会随着退火温度升高而完全消失,相反,在高温退火时铪棒组织中容易形成退火孪晶;铪棒的抗拉强度、屈服强度随着退火温度的升高逐渐降低,抗拉强度的降速出现了先慢后快的现象,屈服强度反之。440、600、740℃高温拉伸断口形貌为多韧窝态的韧性断裂,韧窝大小、密度略有不同,而900、1 040℃退火后,断口形貌存在解理台阶并有河流状花纹,为脆性断裂。  相似文献   

2.
利用光学显微镜(OM)、扫描电子显微镜(SEM)、单向拉伸及显微硬度测试等方法,研究了经室温90°ECAP变形工业纯钛1道次在400、500、600℃退火1h后的组织和性能.结果表明:当退火温度为400℃时,变形组织未发生明显变化,抗拉强度和显微硬度略有降低,伸长率增加;当退火温度高于400℃时,随着退火温度的升高,变形组织发生再结晶,晶粒尺寸增至12μm,工业纯钛的抗拉强度和显微硬度明显降低,伸长率显著提高.工业纯钛的拉伸试样断口均为韧窝型断口,韧窝随退火温度的降低而变得细小、均匀.  相似文献   

3.
TA2钛合金管材热态气压胀形性能及力学性能(英文)   总被引:1,自引:0,他引:1  
通过单向拉伸试验测试TA2钛合金管材在700~850°C和4×104s1~4×101s1应变速率下的力学性能,观察拉伸断口形貌。开发管材热态胀形实验装置,测试管材在770~950°C的热态气压胀形性能,获得胀破压力和极限胀形率随温度的变化规律,并对典型的破裂形式进行分析。结果表明:TA2钛合金管材的抗拉强度随着温度的升高或应变速率的减小而减小;总伸长率显著增大(142%~331%)。热态气压胀形时,随着温度的升高,胀破压力从6.5MPa单调下降至1.2MPa,极限胀形率呈先增加后降低的变化趋势,在890°C时达到最大值,约70%。在不同温度下气胀时,出现环向破裂、轴向破裂及分散破裂3种不同的破裂形式。TA2钛合金管材适合的热态气压成形温度区间为860~920°C。  相似文献   

4.
通过拉伸和撕裂试验及SEM、断口和EBSD晶粒观察,研究了不同回火温度对22MnB5钢力学性能、显微组织、断口形貌及晶粒尺寸的影响。结果表明:在420~720℃范围内,淬火试样随回火温度升高,强度降低,韧性增加,吸能性能提升;单位面积裂纹形核功与回火温度线性无关。淬火试样420℃回火后,部分马氏体开始回复,析出碳化物;温度升高至620℃时,马氏体消失,形成铁素体,碳化物长大。原始试样断口韧窝大且深,淬火试样断口出现大量解理面;420℃回火后断口形貌为韧窝和解理面,620℃回火后断口形貌为细小均匀的韧窝。原始试样淬火后晶粒变小,最大值从10.246μm减小至2.934μm,回火后尺寸峰值向右移动,晶粒长大,出现少量直径小于1μm的晶粒。  相似文献   

5.
介绍了Monel 401管材生产及退火试验方法,分析了冷轧态Monel 401管材试验结果,重点研究了不同退火温度对管材金相组织、力学性能的影响。分析认为:Monel 401管材冷轧态组织为纤维状组织,纤维状组织随退火温度升高而逐渐减少。退火温度700℃时,发生完全再结晶,纤维状组织消失;退火温度550~600℃时,抗拉强度、屈服强度、硬度和伸长率基本保持不变;退火温度600~700℃时,抗拉强度缓慢下降,而屈服强度和硬度呈直线迅速下降,伸长率呈直线迅速上升。退火温度650℃时,管材综合性能较好,满足用户要求。  相似文献   

6.
低浓度Cu-Al2O3弥散强化铜合金退火特性的研究   总被引:9,自引:0,他引:9  
采用短流程工艺制备了低浓度Cu-Al2O3弥散强化铜合金,通过力学性能测量、金相、扫描电镜断口研究了该合金的退火特性。发现该合金80%冷轧后进行退火,强度和硬度随退火温度的升高不断降低,伸长率则不断升高,到400℃下降和升高速率加快,说明合金已发生再结晶;退火温度升高到700℃以后强度和硬度有所升高,而伸长率基本保持不变。组织观察发现900℃退火后的再结晶晶粒比700℃的小,产生细晶强化,强度增量与实验所测增量基本一致,并利用回复再结晶理论对其进行了解释;合金拉伸断口随着退火温度的升高韧窝尺寸和深度都增加,但是900℃韧窝尺寸较700℃的要小。  相似文献   

7.
使用粉末冶金的方法和轧制工艺制备了TZM合金板材,通过金相显微观察、力学性能测试、扫描电子显微镜断口形貌分析的方法,研究了热机械处理的板材组织和力学性能变化规律。研究结果表明:烧结后的等轴晶粒组织经热轧制后变为纤维组织,冷轧进一步增大了纤维组织晶粒的长宽比,其冷轧态板材抗拉强度和延伸率分别为836.0 MPa、14%;冷轧板材经1300℃退火2 h后,板材的抗拉强度和延伸率分别为510.0 MPa和31%;随退火温度的升高,板材的断裂方式由韧窝断裂变为韧性解理断裂+韧窝混合断裂,细小弥散分布的第二相粒子大大提高了合金的塑性。  相似文献   

8.
刘家涛  孙世能  戴山  张野 《热处理》2024,(1):25-27+31
TA15钛合金产品通常都要进行退火处理。为揭示退火温度对其显微组织和力学性能的影响,对?350 mm的TA15钛合金试棒分别进行了在760℃、800℃和840℃保温2 h空冷至室温的退火。随后采用扫描电镜和电子万能拉伸试验机检测了试棒的显微组织、室温和高温拉伸性能以及拉伸断口的形貌。结果表明:随着退火温度的升高,β相转变的组织增多,细小的α相充分球化且杂乱分布;随着退火温度的升高,合金的室温抗拉强度升高,室温屈服强度先升高后略微降低,断后伸长率降低,而高温抗拉强度和屈服强度均升高,塑性变化不大,拉伸断口的韧窝变大变浅,以韧性断裂为主。  相似文献   

9.
对采用严重塑性变形方法制备的超细晶金属进行退火处理,是提高该类材料综合性能的常见方法。为保证晶粒不发生明显长大,对累积叠轧(ARB)方法制备的超细晶纯铜在100℃(低于再结晶温度)时进行退火处理,研究保温时间对ARB超细晶铜室温拉伸断裂行为的影响以及样品的微观结构、力学行为、断口形貌,并对其力学性能和断裂机制进行分析。结果表明:当退火时间为30 min时,ARB超细晶铜的屈服强度和抗拉强度都达到退火态的极大值。断口的大量韧窝表明:退火时间30 min时的材料具有一定的塑性变形能力,断裂机制以韧性断裂为主,因此,退火时间为30 min时,ARB超细晶铜的强度与塑性达到最佳匹配。  相似文献   

10.
王亮军  佘银柱 《锻压技术》2019,44(2):155-158
通过金相显微测试仪和力学拉伸试验仪器,分析了500~700℃退火温度下车用AZ91D镁合金板材室温拉伸力学性能以及断裂组织。研究结果表明:随着退火温度的增加,合金的晶粒尺寸逐渐增大,材料的抗拉强度降低。伸长率先增大后降低,并且在600℃下达到最大值,500,600与700℃温度下退火得到的试样的平均晶粒尺寸分别为4. 3,8. 5与15. 6μm;随着退火温度的增加,板材拉伸断口附近的显微组织中孪晶组织增加,孔洞变小,在500℃退火得到的镁合金板材断口区域存在一条明显的裂纹;随退火温度的增加,板材拉伸断裂机制为微孔聚集型断裂和解理断裂共同存在的混合型断裂。  相似文献   

11.
研究不同温度对热交换器用Inconel 600合金高温热塑性的影响。结果表明:该合金在1 075~1 200℃具有良好的热塑性,拉伸断口处有明显的颈缩现象,为塑性断裂,断面收缩率均在90%以上,且在1 150℃左右达到最大值。随着温度的升高,颈缩越来越明显,断口韧窝越来越多,塑性越来越好,当温度为1 150℃时断口颈缩最大,韧窝数量最多且最深;温度达到1 175℃时韧窝开始明显减少,热塑性开始下降;温度达到1 200℃时拉伸断口较平滑,无韧窝,晶界发生氧化,局部出现晶粒脱落现象;在950~1 200℃,随着温度的升高,合金的再结晶晶粒逐渐增多,温度达到1 050℃时,晶粒基本为分布均匀的细小等轴晶,合金发生完全动态再结晶。  相似文献   

12.
利用X射线衍射仪、光学显微镜、扫描电镜、电子背散射衍射、硬度测试和拉伸实验等手段,研究了退火温度对冷轧变形量为95%的Al_(0.3)CoCrFeNi高熵合金微观组织和力学性能的影响。结果表明:合金经过95%冷轧变形后仍保持FCC单相;冷轧变形后的合金的硬度明显提高,塑性大幅下降,强度提高了4~5倍;经过600℃以上温度退火后,合金发生再结晶;随着退火温度的升高,晶粒尺寸逐渐增大,合金强度下降,塑性提高,断口形貌由解理特征向韧窝特征转变;同时在600~800℃退火时合金中有少量第二相(BCC相)析出,温度越高,第二相析出越明显。  相似文献   

13.
AZ31B镁合金板材快速气压胀形行为   总被引:1,自引:0,他引:1  
对板厚1.0 mm的细晶AZ31B镁合金板材进行快速气压胀形研究,在300~400℃的温度范围内进行了各种气压下300 s的快速气压胀形试验,研究温度和气压对AZ31B板材快速气压胀形能力的影响。结果表明:在不同温度下,胀形高度均随着气压的升高而增大,但气压升高到一定程度时,胀形时间不到300 s即产生破裂;胀形高度在胀形温度400℃时出现峰值为45 mm。在400℃和0.6 MPa条件下,胀形5 min时相对胀形高度达到1.13。胀形件壁厚分布不均匀,温度越高,壁厚分布不均匀度越高。最后,研究了不同温度下快速气压胀形时胀形件微观组织的演变规律。  相似文献   

14.
利用X射线衍射仪、光学显微镜、扫描电镜、电子背散射衍射、硬度测试和拉伸实验等手段,研究了退火温度对冷轧变形量为95%的Al_(0.3)CoCrFeNi高熵合金微观组织和力学性能的影响。结果表明:合金经过95%冷轧变形后仍保持FCC单相;冷轧变形后的合金的硬度明显提高,塑性大幅下降,强度提高了4~5倍;经过600℃以上温度退火后,合金发生再结晶;随着退火温度的升高,晶粒尺寸逐渐增大,合金强度下降,塑性提高,断口形貌由解理特征向韧窝特征转变;同时在600~800℃退火时合金中有少量第二相(BCC相)析出,温度越高,第二相析出越明显。  相似文献   

15.
对TC4钛合金分别进行了920℃、940℃、960℃、980℃保温1 h空冷的退火,随后进行了金相检验、拉伸试验和拉伸断口分析,以揭示退火温度对合金显微组织和拉伸性能的影响。结果表明:不同温度退火的TC4合金组织主要由初生α相和次生α相组成,随着退火温度的升高,初生α相含量减少;随着退火温度的升高,合金的强度升高,塑性降低,980℃退火的合金抗拉强度和屈服强度最高,为973 MPa和961 MPa,而塑性最差,断后伸长率为2%,断面收缩率为8%;在920℃和940℃退火的合金拉伸断口有大量韧窝,具有韧性断裂特征,960℃和980℃退火的合金拉伸断口韧窝数量明显减少,出现明显的撕裂棱和解离台阶,具有韧-脆性断裂特征。  相似文献   

16.
TA2环形管表面残余应力及消除   总被引:1,自引:0,他引:1  
用X射线衍射法研究测定了热推制成形和退火后的环形纯钛管表面的残余应力及分布特点;用OM观察了退火后的试样金相组织:测定了不同退火温度下,钛管抗拉性能,并用SEM观察了拉伸断口形貌。研究结果发现:热推制加工后的环形钛管变形不均匀,存在残余应力;经700℃~750℃再结晶退火后,可有效的降低残余应力;再结晶退火后环形管获得细小等轴晶粒,使抗拉塑性增高。  相似文献   

17.
采用金相电镜、扫描电镜、EDS能谱分析、拉伸性能测试与JMat-Pro材料仿真软件等测试分析手段,研究了Al-6.5Mg合金铸态与退火热处理态下的微观组织与力学性能。结果表明,Al-6.5Mg合金铸态晶粒尺寸约为90μm,平均抗拉强度、屈服强度、伸长率与断面收缩率分别为228 MPa、131.7 MPa、31.9%与39%,铸态断口形貌呈现为典型的韧窝断裂。经500℃×24h与520℃×24h退火热处理后,合金材料的屈服强度、伸长率与断面收缩率保持不变,抗拉强度分别提升了23.2%与24.2%,为281MPa与283MPa,断口形貌仍呈现为韧窝断裂;受退火过程热力学驱动,晶粒内部与晶界处的Mg元素摩尔分数略有增加。  相似文献   

18.
利用扫描电镜、透射电镜和拉伸试验机等研究了退火工艺对深冷轧制6061铝合金微观组织、力学性能及断口形貌的影响。结果表明:经深冷轧制后试样的微观组织显著细化,平均晶粒尺寸小于500 nm,可观察到位错聚集和弥散分布的纳米尺寸析出物;在相同退火温度下,深冷轧制试样的强度及伸长率均优于室温轧制;随着退火温度的升高,试样强度表现为先升高后降低,在退火30~60 min时强度出现峰值;试样的拉伸断口属于韧窝-微孔聚集型,随着退火温度的升高,韧窝尺寸逐渐变深。  相似文献   

19.
AA6061铝合金管材热态气压成形性能及微观组织(英文)   总被引:1,自引:0,他引:1  
为测试AA6061挤压管材的成形性,在350~500°C进行自由胀形实验,为复杂结构件的热态金属气压成形(HMGF)提供基础。通过测量最大胀形率(MER)和破裂压力直接表征加热状态下管材的成形性能。测量不同位置的维氏硬度,进行断口的SEM分析,并通过EBSD方法分析沿轴向和环向的微观组织。结果表明,在425°C下胀形时最大胀形率达到极值86%。随着温度的升高,破裂压力从4.4MPa降至1.5MPa。破裂位置的维氏硬度略高于其它部位。在高温下发生微孔聚集型断裂,在500°C出现过热组织。胀形时随着温度的升高,初始的细小等轴晶粒开始长大并沿轴向和环向被拉长。  相似文献   

20.
在910,930和950℃这3种温度下,针对我国新型TNW700高温钛合金薄板开展了双向超塑性圆锥胀形试验,并对圆锥胀形过程进行了理论分析。结果显示:在稳定加载气压的作用下,随着温度的升高,TNW700高温钛合金板料的超塑性变形能力呈先提升、后下降的趋势,在930℃时获得最佳的成形高度和表面应变,且试件具有最均匀的壁厚分布和最稳定的塑性流变。950℃的试样比930℃的试样的最大表面应变下降了11.8%,但其具有最大的平均应变速率。对试件的微观组织观察可知:随着温度的升高,材料不仅发生了晶粒长大的现象,而且伴随有β相的产生;在同一温度下,随着变形量的增加,一定体积分数的β相增加有利于稳定该材料的塑性流变。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号