首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The H2-TPR (temperature-programmed reduction) study was performed for supported copper oxide catalysts with low loading (0.5 wt% as copper). Among the various kinds of support materials (γ-Al2O3, TiO2, ZrO2, SiO2, ZSM-5), alumina-supported copper oxide indicated a one-electron reduction behavior of Cu2+ into Cu+ ions in the presence of H2. The reduction of the isolated Cu2+ species in a tetragonally distorted octahedral symmetry into the low coordinated Cu+ ions was identified by means of X-ray absorption spectroscopy (XANES and EXAFS). The isolated Cu+ ions hosted by γ-Al2O3 surface were prevented from further reduction into metallic Cu0 state under reducing condition with H2 at 773 K. Less dispersed supported copper oxide species were easily reduced to Cu0 metal particles with H2 at 573 K regardless of the kinds of support materials. It is suggested that the one-electron redox behavior of the isolated copper oxide species over γ-Al2O3 promotes the catalytic reduction of NO with CO in the presence of oxygen on the basis of redox-type mechanism between Cu2+ and Cu+ in atomically dispersed state.  相似文献   

2.
This article describes a novel hydrothermal deposition method for preparing highly dispersed NiW/γ-Al2O3 catalysts and demonstrates its advantages over the conventional impregnation method. Via the hydrothermal precipitation reactions between sodium tungstate and hydrochloric acid and between nickel nitrate and urea, respectively, the active species W and Ni were deposited on γ-Al2O3. In the hydrothermal deposition of WO3, a surfactant hexadecyltrimethyl ammonium bromide (CTAB) was used to prevent the aggregation of WO3. The characterization results obtained by means of X-ray photoelectron spectroscopy (XPS), N2 adsorption and high-resolution transmission electron microscopy (HRTEM) measurements showed that compared with the catalyst prepared by the conventional impregnation method, the catalyst with the same metal contents prepared by the hydrothermal deposition had much higher W and Ni dispersion, higher specific surface area, larger pore volume, the significantly decreased slab length and slightly increased stacking degree of sulfided W species, leading to the significantly enhanced dibenzothiophene (DBT) hydrodesulfurization (HDS) activity. The DBT HDS assessment results also revealed that the catalyst containing 17.7 wt% WO3 and 2.4 wt% NiO prepared by the hydrothermal deposition method had the similar DBT HDS activity as a commercial NiW/γ-Al2O3 catalyst containing 23 wt% WO3 and 2.6 wt% NiO, resulting in the greatly decreased amount of active metals for achieving the same HDS activity.  相似文献   

3.
The influences of calcination temperatures and additives for 10 wt.% Cu/γ-Al2O3 catalysts on the surface properties and reactivity for NO reduction by C3H6 in the presence of excess oxygen were investigated. The results of XRD and XPS show that the 10 wt.% Cu/γ-Al2O3 catalysts calcined below 973 K possess highly dispersed surface and bulk CuO phases. The 10 wt.% Cu/γ-Al2O3 and 10 wt.% Mn–10 wt.% Cu/γ-Al2O3 catalysts calcined at 1073 K possess a CuAl2O4 phase with a spinel-type structure. In addition, the 10 wt.% La–10 wt.% Cu/γ-Al2O3 catalyst calcined at 1073 K possesses a bulk CuO phase. The result of NO reduction by C3H6 shows that the CuAl2O4 is a more active phase than the highly dispersed and bulk CuO phase. However, the 10 wt.% Mn–10 wt.% Cu/γ-Al2O3 catalyst calcined at 1073 K possesses significantly lower reactivity for NO reduction than the 10 wt.% Cu/γ-Al2O3 catalyst calcined at 1073 K, although these catalysts possess the same CuAl2O4 phase. The low reactivity for NO reduction for 10 wt.% Mn–10 wt.% Cu/γ-Al2O3 catalyst calcined at 1073 K is attributed to the formation of less active CuAl2O4 phase with high aggregation and preferential promotion of C3H6 combustion to COx by MnO2. The engine dynamometer test for NO reduction shows that the C3H6 is a more effective reducing agent for NO reduction than the C2H5OH. The maximum reactivity for NO reduction by C3H6 is reached when the NO/C3H6 ratio is one.  相似文献   

4.
A series of phosphorus promoted γ-Al2O3 supported NiMo carbide catalysts with 0–4.5 wt.% P, 13 wt.% Mo and 2.5 wt.% Ni were synthesized and characterized by elemental analysis, pulsed CO chemisorption, BET surface area measurement, X-ray diffraction, near-edge X-ray absorption fine structure, DRIFT spectroscopy of CO adsorption and H2 temperature programmed reduction. X-ray diffraction patterns and CO uptake showed the P addition to NiMo/γ-Al2O3 carbide, increased the dispersion of β-Mo2C particles. DRIFT spectra of adsorbed CO revealed that P addition to NiMo/γ-Al2O3 carbide catalyst not only increases the dispersion of Ni-Mo carbide phase, but also changes the nature of surface active sites. The hydrodenitrogenation (HDN) and hydrodesulfurization (HDS) activities of these P promoted NiMo/γ-Al2O3 carbide catalysts were performed in trickle bed reactor using light gas oil (LGO) derived from Athabasca bitumen and model feed containing quinoline and dibenzothiophene at industrial conditions. The P added NiMo/γ-Al2O3 carbide catalysts showed enhanced HDN activity compared to the NiMo/γ-Al2O3 catalysts with both the feed stocks. The P had almost no influence on the HDS activity of NiMo/γ-Al2O3 carbide with LGO and dibenzothiophene. P addition to NiMo/γ-Al2O3 carbide accelerated CN bond breaking and thus increased the HDN activity.  相似文献   

5.
The photocatalytic oxidative dehydrogenation of cyclohexane on sulphated MoOx/γ-Al2O3 catalysts has been studied in a two-dimensional fluidized bed photoreactor. The influence of Mo loading at similar sulphate content and the effect of catalyst preparation method have been investigated.Considering the influence of Mo loading at similar sulphate content, the highest photoactivity at 2.4 SO4 wt% was found at MoO3 loading of 8 wt%. Selectivity to cyclohexene was 100%, irrespective of the Mo content.At fixed MoOx content, in particular at 50% of theoretical monolayer coverage, the preparation method of catalysts strongly affected the photocatalysts performances, showing in addition a slight decrease in selectivity to cyclohexene due to side-production of benzene. All the catalysts showed a similar equivalent band gap energy. Thermogravimetric analysis evidenced the presence of surface sulphate species of different thermal stabilities. A linear correlation of photoactivity with the surface sulphates amount of lower thermal stability has been found for all sub-monolayer MoOx sulphated catalysts. The neighboring of surface sulphates to octahedral polymolybdate species appears to be a key parameter for the photoactivity of the catalysts.The catalyst selectivity was related to surface acidity. Higher acidity resulted in increased cyclohexene dark adsorption and consequently in enhanced benzene formation.  相似文献   

6.
Ni catalysts supported on γ-Al2O3, CeO2 and CeO2–Al2O3 systems were tested for catalytic CO2 reforming of methane into synthesis gas. Ni/CeO2–Al2O3 catalysts showed much better catalytic performance than either CeO2- or γ-Al2O3-supported Ni catalysts. CeO2 as a support for Ni catalysts produced a strong metal–support interaction (SMSI), which reduced the catalytic activity and carbon deposition. However, CeO2 had positive effect on catalytic activity, stability, and carbon suppression when used as a promoter in Ni/γ-Al2O3 catalysts for this reaction. A weight loading of 1–5 wt% CeO2 was found to be the optimum. Ni catalysts with CeO2 promoters reduced the chemical interaction between nickel and support, resulting in an increase in reducibility and stronger dispersion of nickel. The stability and less coking on CeO2-promoted catalysts are attributed to the oxidative properties of CeO2.  相似文献   

7.
Mn effect and characterization on γ-Al2O3-, -Al2O3- and SiO2-supported Ru catalysts were investigated for Fischer–Tropsch synthesis under pressurized conditions. In the slurry phase Fischer–Tropsch reaction, γ-Al2O3 catalysts showed higher performance on CO conversion and C5+ selectivity than -Al2O3 and SiO2 catalysts. Moreover, Ru/Mn/γ-Al2O3 exhibited high resistance to catalyst deactivation and other catalysts were deactivated during the reaction. From characterization results on XRD, TPR, TEM, XPS and pore distribution, Ru particles were clearly observed over the catalysts, and γ-Al2O3 catalysts showed a moderate pore and particle size such as 8 nm, where -Al2O3 and SiO2 showed highly dispersed ruthenium particles. The addition of Mn to γ-Al2O3 enhanced the removal of chloride from RuCl3, which can lead to the formation of metallic Ru with moderate particle size, which would be an active site for Fischer–Tropsch reaction. Concomitantly, manganese chloride is formed. These schemes can be assigned to the stable nature of Ru/Mn/γ-Al2O3 catalyst.  相似文献   

8.
Ag-modified La0.6Sr0.4MnO3-based catalysts with the perovskite-type structure were prepared by using a citric acid sol–gel method, and their catalytic performance for complete oxidation of methanol and ethanol was evaluated and compared with that of the γ-Al2O3-supported catalysts, Ag/γ-Al2O3, Pt/γ-Al2O3, and Pd/γ-Al2O3. The results showed that the Ag-modified La0.6Sr0.4MnO3-based catalysts with the perovskite-type structure displayed the activity significantly higher than that of the supported precious metal catalysts, 0.1%Pd/γ-Al2O3 and 0.1%Pt/γ-Al2O3 in the temperature range of 370–573 K. Over a 6%Ag/20%La0.6Sr0.4MnO3/γ-Al2O3 catalyst, the T95 temperature for methanol oxidation can be as low as 413 K. Even at such low reaction temperature, there were little HCHO and CO detected in the reaction exit-gas. However, for the 0.1%Pd/γ-Al2O3 and 0.1%Pt/γ-Al2O3 catalysts, the HCHO content in the reaction exit-gas reached 200 and 630 ppm at their T95 temperatures. Over a 6%Ag/La0.6Sr0.4MnO3 catalyst, the T95 temperature for ethanol oxidation can be as low as 453 K, with a corresponding content of CH3CHO in the exit-gas at 782 ppm; when ethanol oxidation is performed at 493 K, the content of acetaldehyde in the exit-gas can be below 1 ppm. Characterization of the catalysts by X-ray diffraction (XRD), TEM, XPS, laser Raman spectra (LRS), hydrogen temperature-programmed reduction (H2-TPR) and oxygen temperature-programmed desorption (O2-TPD) methods revealed that both the surface and the bulk phase of the perovskite La0.6Sr0.4MnO3 played important roles in the catalytic oxidation of the alcohols, and that γ-Al2O3 as the bottom carrier could be beneficial in creating a large surface area of catalyst. Moreover, a small amount of Ag+ doped onto the surface of La0.6Sr0.4MnO3 was able to partially occupy the positions of La3+ and Sr2+ due to their similar ionic radii, and thus, became stabilized by the perovskite lattice, which would be in favor of preventing the aggregation of the Ag species on the surface and enhancing the stability of the catalyst. On the other hand, modification of the Ag+ to the surface of La0.6Sr0.4MnO3 resulted in an increase in relative content of the surface O22−/O species highly reactive toward the alcohols and aldehydes as well as CO. Besides, solution of low-valence metal oxides SrO and Ag2O with proper amounts in the lattice of the trivalent metal perovskite-type oxide LaMnO3 would also lead to an increase in the content of the reducible Mnn+ and the formation of anionic vacancies, which would be favorable for the adsorption-activation of oxygen on the functioning catalyst and the transport of the lattice and surface oxygen species. All these factors would contribute to the pronounced improvement of the catalyst performance.  相似文献   

9.
A new catalyst composed of nickel oxide and cerium oxide was studied with respect to its activity for NO reduction by CO under stoichiometric conditions in the absence as well as the presence of oxygen. Activity measurements of the NO/CO reaction were also conducted over NiO/γ-Al2O3, NiO/TiO2, and NiO/CeO2 catalysts for comparison purposes. The results showed that the conversion of NO and CO are dependent on the nature of supports, and the catalysts decreased in activity in the order of NiO/CeO2 > NiO/γ-Al2O3 > NiO/TiO2. Three kinds of CeO2 were prepared and used as support for NiO. They are the CeO2 prepared by (i) homogeneous precipitation (HP), (ii) precipitation (PC), and (iii) direct decomposition (DP) method. We found that the NiO/CeO2(HP) catalyst was the most active, and complete conversion of NO and CO occurred at 210 °C at a space velocity of 120,000 h−1. Based on the results of surface analysis, a reaction model for NO/CO interaction over NiO/CeO2 has been proposed: (i) CO reduces surface oxygen to create vacant sites; (ii) on the vacant sites, NO dissociates to produce N2; and (iii) the oxygen originated from NO dissociation is removed by CO.  相似文献   

10.
Vanadium oxides supported on γ-Al2O3, SiO2, TiO2, and ZrO2 were studied on their molecular structures and reactive performances for soot combustion. To investigate the effect of different alkali metals on the structures and reactivities of supported-vanadium oxide catalysts, they were doped into the V4/TiO2 catalyst which had the best intrinsic activity for soot combustion in the selected supported vanadium oxide catalysts. The experimental results demonstrated that the catalytic properties of these catalysts depended on the vanadium loading amount, support nature, and the presence or the absence of alkali metals. The spectroscopic analysis (FT-IR and UV–vis) and H2-TPR results revealed that the higher activity of alkali-promoted vanadium oxide catalysts could be related to the ability of alkali metal promoting the redox cycle of the active vanadyl species. TG results showed that adding alkali to Vm/TiO2 catalyst was beneficial to lowering their melting points. Low melting points could ensure the good surface atom migration ability, which would improve the contact between the catalyst and soot. Due to the alkali metal components promoting the redox ability and the mobility of the catalysts, alkali-modified vanadium oxide catalysts could remarkably improve their catalytic activities for soot combustion. The catalytic activity order for soot combustion followed Li > Na > K > Rb > Cs in the catalyst system of alkali-V4/TiO2, and the reason why it followed this sequence was discussed.  相似文献   

11.
Pt supported on γ-Al2O3, TiO2 and ZrO2 are active catalysts for the CO2 reforming of methane to synthesis gas. The stability of the catalysts increased in the order Pt/γ-A12O3 < Pt/TiO2 < Pt/ZrO2. For all catalysts, the decrease in activity with time on stream is caused by carbon formation, which blocks the active metal sites for reaction. With Pt/TiO2 and Pt/ZrO2, deactivation started immediately after the start of the reaction, while the Pt/γ-A12O3 catalyst showed an induction period during which carbon was accumulated without affecting the catalytic activity.  相似文献   

12.
O. Demoulin  M. Navez  P. Ruiz 《Catalysis Today》2006,112(1-4):153-156
Operando DRIFTS was applied to the study of the evolution of surface species formed on a Pd (2 wt.%)/γ-Al2O3 catalyst in various conditions. No differences were observed as a function of the initial oxidation state of palladium. Formates/carbonates species were identified at low temperature (<400 °C) and disappeared when CO2 production started. These species come from the Pd-catalyzed interaction of CO with the alumina support, while CO2 induces hydrogenocarbonates formation at low temperature (<300 °C). Their presence does not explain the inhibiting effect of CO2 observed in CCM on Pd/γ-Al2O3 catalysts.  相似文献   

13.
Zirconium sulfate supported on γ-Al2O3 catalysts were prepared by impregnation of powdered γ-Al2O3 with zirconium sulfate aqueous solution followed by calcining in air at high temperature. For Zr(SO4)2/γ-Al2O3 samples, no diffraction line of zirconium sulfate was observed up to 50 wt.%, indicating good dispersion of Zr(SO4)2 on the surface of γ-Al2O3. The acidity of catalysts increased in proportion to the zirconium sulfate content up to 40 wt.% of Zr(SO4)2. 40-Zr(SO4)2/γ-Al2O3 calcined at 400 °C exhibited maximum catalytic activities for 2-propanol dehydration and cumene dealkylation. The catalytic activities for both reactions, 2-propanol dehydration and cumene dealkylation were correlated with the acidity of catalysts measured by ammonia chemisorption method.  相似文献   

14.
To get the low temperature sulfur resistant V2O5/TiO2 catalysts quantum chemical calculation study was carried out. After selecting suitable promoters (Se, Sb, Cu, S, B, Bi, Pb and P), respective metal promoted V2O5/TiO2 catalysts were prepared by impregnation method and characterized by X-ray diffraction (XRD) and Brunner Emmett Teller surface area (BET-SA). Se, Sb, Cu, S promoted V2O5/TiO2 catalysts showed high catalytic activity for NH3 selective catalytic reduction (NH3-SCR) of NOx carried at temperatures between 150 and 400 °C. The conversion efficiency followed in the order of Se > Sb > S > V2O5/TiO2 > Cu but Se was excluded because of its high vapor pressure. An optimal 2 wt% ‘Sb’ loading was found over V2O5/TiO2 for maximum NOx conversion, which also showed high resistance to SO2 in presence of water when compared to other metal promoters. In situ electrical conductivity measurement was carried out for Sb(2%)/V2O5/TiO2 and compared with commercial W(10%)V2O5/TiO2 catalyst. High electrical conductivity difference (ΔG) for Sb(2%)/V2O5/TiO2 catalyst with temperature was observed. SO2 deactivation experiments were carried out for Sb(2%)/V2O5/TiO2 and W(10%)/V2O5/TiO2 at a temperature of 230 °C for 90 h, resulted Sb(2%)/V2O5/TiO2 was efficient catalyst. BET-SA, X-ray photoelectron spectroscopy (XPS) and carbon, hydrogen, nitrogen and sulfur (CHNS) elemental analysis of spent catalysts well proved the presence of high ammonium sulfate salts over W(10%)/V2O5/TiO2 than Sb(2%)/V2O5/TiO2 catalyst.  相似文献   

15.
An important improvement of the photocatalytic activity of sol–gel prepared TiO2 has been achieved by sulphate pre-treatment, calcination at high temperature and further platinisation of the samples.

The presence of sulphuric acid clearly stabilised TiO2 surface area against sintering, maintaining at the same time anatase phase until higher calcination temperatures than in non-sulphated samples. Platinisation of the samples with different nominal amounts of platinum (from 0.5 to 2.5 wt%) was performed and the influence of sulphate treatment on the dispersion and deposit size of platinum on the TiO2 surface was studied.

Characterisation results and photocatalytic activity of these catalysts were compared with those of unmodified TiO2. Simultaneously sulphated and platinised TiO2 samples were highly active for phenol degradation, used as model reaction for the photocatalytic studies, having higher activities than only platinised or only sulphated samples. The activity of these samples were several orders of magnitude higher than that of the commercial TiO2 Degussa P25 (platinised or unmodified) as well, with independence of the nominal amount of platinum of the samples.

A wide characterisation of the samples was performed and correlations between characterisation results and activity properties are reported.  相似文献   


16.
Two types of NiO/γ-Al2O3 catalysts prepared by the impregnation and the sol–gel method were used for the partial oxidation of methane to syngas at 850°C (GHSV1.8×105 lkg−1 h−1). The effects of the carbon deposition, the loss and sintering of nickel and the phase transformation of γ-Al2O3 support on the catalytic performance during 80 h POM reaction were investigated with a series of characterization such as XRD, BET, AAS, TG, and XPS. The results indicated that the carbon deposition and the loss and sintering of nickel could not cause the serious decrease of catalytic performance over NiO/γ-Al2O3 catalyst during the short-time reaction. However, the slow process of the support γ-Al2O3 phase transforming into -Al2O3 could slowly decrease the performance of NiO/γ-Al2O3 catalysts. Aimed at the reasons of the deactivation, an improved catalyst was obtained by the complexing agent-assisted sol–gel method.  相似文献   

17.
The distribution of gaseous products and the nature of the surface species generated during the selective catalytic reduction of NO with C3H6 in the presence of excess O2 (i.e. C3H6-SCR) were studied over both a 0.4% Co/γ-Al2O3 catalyst and a sulphated 1.2% Ag/γ-Al2O3 catalyst. The results were compared with those previously reported for the C3H6-SCR over 1.2% Ag/γ-Al2O3 and γ-Al2O3. High concentrations of NO2 were observed in the product stream of the SCR reaction over the 0.4% Co/γ-Al2O3 and sulphated 1.2% Ag/γ-Al2O3 materials. The results show that (as in the case of the γ-Al2O3 and also probably that of the 1.2% Ag/γ-Al2O3) the NO2 was formed via an alternative route to the direct oxidation of NO with O2. The yields of NO2 were higher over the Co/γ-Al2O3 than over the other materials and in contrast to the other materials, no NH3 was produced over the Co/γ-Al2O3 catalyst. Based on these results and those of in situ DRIFTS experiments, a global reaction scheme incorporating organo-nitrogen species as key intermediates is proposed. In this scheme, NO, propene and oxygen react to form organo-nitro and/or organo-nitrito adsorbed species, the reaction products of which combine to yield N2. The results reported here suggest that Co preferentially promotes the formation of nitrito-compounds which can readily decompose to NO2, whereas Ag preferentially promotes the formation of nitro-compounds (from reaction of strongly bound ad-NOx species) which can decompose to isocyanates and ammonia. The sulphation of the 1.2% Ag/γ-Al2O3 reduced the surface concentration of strongly bound ad-NOx species which were thought to react with the reductant or derived species to yield the organo-nitrogen species.  相似文献   

18.
The present paper gives a detailed review of the different studies under investigation in our laboratory concerning the use of TiO2 and TiO2–Al2O3 composites prepared by chemical vapor deposition (CVD) as support for sulfide catalysts in the HDS of dibenzothiophene (DBT) derivatives. The supports investigated here are: TiO2 (from Degussa, 50 m2/g), Al2O3 (Nikki, 186 m2/g) and TiO2–Al2O3 supports prepared by CVD of TiCl4 on alumina. Using several characterization techniques, we have demonstrated that the support composite presents a high dispersion of TiO2 over γ-Al2O3 without forming precipitates up to ca. 11 wt.% loading. Moreover, the textural properties of the support composite are comparable to those of alumina. XPS investigations of Mo and NiMo catalysts supported on the different carriers show that Mo-oxide species exhibit a higher degree of sulfidation on the surface of TiO2 and TiO2–Al2O3 than on alumina. The HDS tests of 4,6-DMDBT under mild operating conditions (573 K, 3 MPa) show that sulfide catalysts supported on the composite support (ca. 11 wt.%) are more active than those supported on to TiO2 or Al2O3. This higher HDS catalytic activity is attributed to the promotion of the hydrodesulfurization pathway, whereby the pre-hydrogenation of one of the aromatic rings adjacent to the thiophenic one may reduce the steric hindrance caused by the two methyl groups adjacent to the sulfur atom during the C–S bond cleavage.  相似文献   

19.
This work investigates performances of supported transition-metal oxide catalysts for the catalytic reduction of SO2 with C2H4 as a reducing agent. Experimental results indicate that the active species, the support, the feed ratio of C2H4/SO2, and pretreatment are all important factors affecting catalyst activity. Fe2O3/γ-Al2O3 was found to be the most active catalyst among six γ-Al2O3-supported metal oxide catalysts tested. With Fe2O3 as the active species, of the supports tested, CeO2 is the most suitable one. Using this Fe2O3/CeO2 catalyst, we found that the optimal Fe content is 10 wt.%, the optimal feed ratio of C2H4/SO2 is 1:1, and the catalyst presulfidized by H2+H2S exhibits a higher performance than those pretreated with H2 or He. Although the feed concentrations of C2H4:SO2 being 3000:3000 ppm provide a higher conversion of SO2, the sulfur yield decreases drastically at temperatures above 300 °C. With higher feed concentrations, maximum yield appears at higher temperatures. The C2H4 temperature-programmed desorption (C2H4-TPD) and SO2-TPD desorption patterns illustrate that Fe2O3/CeO2 can adsorb and desorb C2H4 and SO2 more easily than can Fe2O3/γ-Al2O3. Moreover, the SO2-TPD patterns further show that Fe2O3/γ-Al2O3 is more seriously inhibited by SO2. These findings may properly explain why Fe2O3/CeO2 has a higher activity for the reduction of SO2.  相似文献   

20.
In this work, different procedures, namely carbonate coprecipitation and modified solid–solid diffusion, were used to prepare hexaaluminate samples, unsupported or supported onto θ-Al2O3. These samples were used as catalyst for the methane total oxidation as synthesized or after impregnation of 1 wt% Pd. It was observed that the modified solid–solid diffusion procedure is an efficient method to obtain the hexaaluminate structure. At a theoretical ratio x of hexaaluminate onto Al2O3 less than 0.6 (xLa0.2Sr0.3Ba0.5MnAl11O19 + (1−x)·Al2O3, with x = 0.25, 0.60), samples with high specific surface area and θ-Al2O3 structure are then obtained. Large differences in catalytic activity can be observed among the series of sample synthesized. All the pure oxide samples (i.e. without palladium) present low catalytic activity for methane total oxidation compared to a reference Pd/Al2O3 catalyst. The highest activity was obtained for the samples presenting a θ-Al2O3 structure (with x = 0.60) and a high surface area. Impregnation of 1 wt% palladium resulted in an increase in catalytic activity, for all the solids synthesized in this work. Even if the lowest light-off temperature was obtained on the reference sample, similar methane conversions at high temperature (700 °C) were obtained on the stabilized θ-Al2O3 solids (x = 0.25, 0.60). Moreover, the reference sample is found to strongly deactivate with reaction time at the temperature of test (700 °C), due to a progressive reduction of the PdOx active phase into the less active Pd° phase, whereas excellent stabilities in reaction were obtained on the pure and palladium-doped hexaaluminate and supported θ-Al2O3 samples. This clearly showed the beneficial effect of the support for the stabilization of the PdOx active phase at high reaction temperature. These properties are discussed in term of oxygen transfer from the support to the palladium particle. Oxygen transfer is directly related to the Mn3+/Mn2+ redox properties (in the case of the hexaaluminate and stabilized θ-Al2O3 samples), that allows a fast reoxidation of the metal palladium sites since palladium sites reoxidation cannot occur directly by gaseous dioxygen adsorption and dissociation on the surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号