首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
富磷剩余污泥重力浓缩过程中各参数的变化特征   总被引:1,自引:0,他引:1  
以A2/O系统的富磷剩余污泥为研究对象,考察了污泥浓缩过程中上清液各参数的变化特征,以及浓缩前、后污泥中阳离子及磷酸盐分布的变化.结果表明:随着重力浓缩的进行,污泥中的磷酸盐不断释放,到浓缩结束时释磷量可达5.51 mgP/g污泥,平均释磷速率为0.189 mgP/(g污泥·h);在释放的磷酸盐中,非磷灰石无机磷占60%左右,磷灰石无机磷约占40%,有机磷的释放量极为有限;在释磷过程中伴随着K+、Mg2+的释放;污泥浓缩前、后其性质并没有发生变化,聚磷菌仍然具有一定的好氧吸磷/厌氧释磷特性.  相似文献   

2.
以汾河水库沉积物为对象,通过灭菌-未灭菌、投药-未投药(还原剂)静态对比实验,系统考察了PO43-、NH4+-N、Fe等污染物的内源释放特性,并对沉积磷及其各组分形态进行分析。结果表明:微生物代谢活动促进底泥磷释放;ORP影响氮、磷释放,但NH4+-N释放对于ORP变化的敏感度不及PO43-;厌氧条件下(DO=0~0.5mg/L),灭菌反应器中NH4+-N、Fe释放强度均高于未灭菌组;Fe、P释放间存在线性正相关性(R2=0.7585~0.7656)。底泥磷释放以O-P、Fe-P为主,其中各形态无机磷占其总量的百分比排序为:Ca10-P(47%)>Fe-P(25%)>O-P(19%)>Ca8-P(5%)>Ca2-P(3%)>Al-P(1%);此外,还证明了碱性磷酸酶比活性(APA)变化与内源磷释放间存在负相关性。  相似文献   

3.
以开发小城镇污水高效脱氮除磷分散处理设备为目标,在管式压力生物膜反应器中构建同步脱氮除磷系统,并探讨其处理效能.反应器在温度为20 ~ 25℃、压力为0.1 ~0.12 MPa、有机负荷为2.6 kgCOD/(m3 ·d)、氮负荷为0.4 kgTN/(m3·d)、磷负荷为0.04 kgP/(m3·d)及无污泥外排条件下运行30 d后,出水COD、PO3--P、NH4+-N、TN分别为35、0.9、7、7.5 mg/L,去除率分别为90%、76%、78%、83%;系统运行30 d共损失磷约0.87 kg,生物膜中磷含量为2.14%,污泥中结合态磷化氢含量为0.012 mg/kg,为非聚磷菌除磷途径;PCR-DGGE分析表明,接种污泥和反应器内成熟生物膜的种群相似度为52.3%.  相似文献   

4.
《Planning》2016,(7):34-40
长期施用化肥和畜禽粪可导致土壤中磷的积累,从而影响土壤中磷的生物有效性和可移动性,后者与土壤中磷存在的化学形态有关。为了解蔬菜地土壤磷积累过程中其化学形态的演变与土壤性状的关系,选择了红粘泥、黄筋泥、泥质田、淡涂泥和油黄泥等5种不同性状的土壤,通过添加化肥和猪粪模拟构建了不同磷积累的系列土壤,采用Hedley磷形态分析方法鉴定了土壤磷的化学形态及释放法潜力。结果表明:与未加磷处理土壤相比,所有蔬菜地土壤中磷的积累对H_2O-P和NaHCO_(3~-)IP增幅影响最大;在中性和石灰性土壤中,磷积累可明显促进HCl-P的形成,但对NaOH-IP的影响较小;在富铝化土壤中,磷的积累有利于NaOH-IP的形成,但对HCl-P形成的影响较小。无论是施化肥还是有机肥,土壤中积累的磷主要为无机态,对有机态磷的贡献较小;随着土壤磷的不断积累,磷积累对H_2O-P和NaHCO_(3~-)IP的影响更为明显。  相似文献   

5.
以竹园污泥焚烧工程为依托,采用SMT方法研究磷在干污泥、炉渣和飞灰中的含量及赋存形态。结果表明,焚烧过程使炉渣及飞灰中的总磷(TP)含量比干污泥提高了2~3倍,还使其中的无机磷(IP)含量大幅提升至TP总量的99%以上,在实现磷富集的同时有效提升了磷的生物可利用性。分析焚烧过程对磷灰石无机磷(AP)和非磷灰石无机磷(NAIP)的影响,发现镁离子与钙离子会与污泥中的NAIP发生反应,取代铝离子从而生成钙镁结合形式的AP;与炉渣相比,飞灰在布袋处受CaO添加的影响,此种转化趋势更为明显,AP已经超过NAIP成为优势形态,占IP总量的78.4%。焚烧是上海地区处理污泥的主要方式,该研究结果从营养物回收角度为污泥焚烧飞灰的资源化利用提供了新思路。  相似文献   

6.
以絮状生物除磷污泥为参照,对生物除磷颗粒污泥的物理、化学、生物特性和除磷特性进行系统研究。结果表明:生物除磷颗粒污泥呈淡黄色,外观呈球形或椭球形,边界光滑清晰,沉降速度在15~20 m/h左右,含水率为95.94%,相对密度为1.193,粒径在0.3~0.5 mm之间,SVI值在50 mL/g以下,颗粒污泥最大比释磷速率和最大比吸磷速率分别为104.43、44.72 mgP/(gVSS.h),污泥中总磷含量(TP/SS值)为7.4%;絮状生物除磷污泥呈淡黄色,结构紧密,污泥含水率为97.65%,相对密度为1.040,最大比释磷速率和最大比吸磷速率分别为104.82、42.43 mgP/(gVSS.h),TP/SS值达到9.5%。生物除磷颗粒污泥具有较强的除磷能力和优良的物理、化学、生物性能。  相似文献   

7.
针对高盐条件下生物脱氮除磷系统构建周期长、构建困难的问题,在前期对高盐榨菜废水磷酸盐生物还原除磷及同步硝化反硝化脱氮技术研究的基础上,探讨高盐榨菜废水基于磷酸盐还原除磷的同步脱氮除磷系统的快速构建方法,重点考察不同城市污水厂的接种污泥对系统构建的影响,并采用PCR-DGGE技术探讨了系统微生物种群结构的变化。在盐度为3%(以NaCl计)、水温为(30±2)℃、DO为3~4 mg/L、负荷为0.5 kgCOD/(m3.d)的条件下,接种不同城市污水厂污泥的反应器在18~30 d内均能够成功构建出同步生物脱氮除磷系统,对COD、PO34--P、NH4+-N、TN的去除率分别达到95%、60%、97%和95%以上,泥种对系统构建的影响不显著。PCR-DGGE研究表明:在系统构建过程中微生物群落结构发生了变化,但与接种污泥微生物种群仍存在56.4%的相似度,表明接种污泥中有部分微生物可以适应高盐环境。  相似文献   

8.
分别采用先酸(pH值=3.0)后碱(pH值=10.0)、先碱(pH值=10.0)后酸(pH值=3.0)的两段控制方式(每段反应8 d),同时做pH值不调节的对比试验,研究剩余污泥中磷的释放速率及其形态转化情况。结果表明,酸性调节更有利于磷的释放,而碱性调节对钙磷和弱吸附态磷的赋存有利;磷的释放速率在1~2 h内达到最大,这有利于短期内获得高浓度的PO3-4-P;铝磷是剩余污泥中磷的主要赋存形态。  相似文献   

9.
以高盐、高磷榨菜废水为研究对象,探讨了厌氧序批式生物膜反应器(ASBBR)生物还原磷酸盐的除磷效能,考察了温度、pH、负荷及NO3--N浓度等因素对磷酸盐生物还原除磷的影响.研究表明:温度、pH、负荷及NO3--N浓度对磷酸盐还原除磷效果的影响显著.在水温为30℃、pH值为7.1、负荷为1.0 kgCOD/(m3·d)的条件下,反应器对COD和PO43--P的去除率分别为73.75%和39.85%;当NO3--N为105~160 mg/L时有利于磷酸盐还原除磷.  相似文献   

10.
以西安市采用不同工艺的三个污水处理厂为研究对象,对其除磷效果进行测定,利用荧光原位杂交技术(FISH)对污泥中的聚磷菌、聚糖菌和总细菌的数量和分布特征进行分析。结果表明,厌氧释磷速率为2.81~11.03 mgP/(gVSS·h),厌氧过程中吸收单位质量乙酸的释磷量为0.098~0.345 mg。好氧吸磷速率为3.03~13.58 mgP/(gVSS·h),缺氧吸磷速率为1.93~4.48mgP/(gVSS·h),缺氧、好氧吸磷速率的比值为33.02%~71.91%。污泥中聚磷菌占总细菌的比例为0.43%~5.34%,聚糖菌的比例为0.16%~10.08%。聚磷菌和聚糖菌在活性污泥絮体中的分布状态存在明显差异,聚磷菌主要以菌胶团形式存在,而聚糖菌则均匀分布于絮体中。  相似文献   

11.
污水除磷及回收技术   总被引:3,自引:1,他引:2  
亓延敏  吕锡武  徐微 《山西建筑》2008,34(4):191-193
介绍了当前污水中除磷的主要方法,阐述了各种除磷方法的原理、优缺点以及常用的处理工艺,对磷回收的原理、工艺做了简单的论述,以加强对除磷技术的研究,实现磷的可持续发展。  相似文献   

12.
污水磷回收方法与技术概述   总被引:1,自引:0,他引:1  
徐微  杨贤明 《山西建筑》2010,36(20):152-154
指出磷是造成水体富营养化的主要因素之一,同时又是一种宝贵的资源,从污水中回收磷,既可减少水体磷排放量,又能缓解磷资源不足的压力,系统介绍了污水磷回收的主要技术,从而为相关研究及应用奠定基础。  相似文献   

13.
生物除磷机理与新工艺   总被引:1,自引:0,他引:1  
刘晓亮  李亚新 《山西建筑》2006,32(1):191-192
综述了生物除磷的PAO和DPB原理,介绍了PASF、Dephanox和A3N-SBR三种新的脱氮除磷工艺,从而达到提高脱氮除磷效果,消除水环境污染的目的。  相似文献   

14.
化学除磷比值对低碳源污水脱氮除磷的影响   总被引:2,自引:0,他引:2  
为解决低碳源城市污水高效脱氮除磷及磷回收问题,开发了侧流A2O工艺,通过抽取不同量的厌氧池末端富磷上清液至化学除磷池,来研究系统的脱氮除磷效果及磷回收情况。结果表明,在无需增加额外碳源,进水COD为136~168 mg/L、NH3-N为32~40 mg/L、TN为36~45mg/L、TP为6~8 mg/L的条件下,当化学除磷比(富磷上清液抽取量与进水量之比)为10%~20%时,对TN和TP的平均去除率分别可达到95.7%、84%,其中,当化学除磷比为15%时,出水TP浓度可降至0.5 mg/L以下,出水水质达到《城镇污水处理厂污染物排放标准(》GB 18918—2002)的一级A标准;同时,回收磷量可达进水磷量的23%~29%,既实现了磷的可持续发展,又增加了污水厂的经济效益。  相似文献   

15.
左宁  白雪 《山西建筑》2014,(35):143-144
针对国内外开发的大多数污泥减量技术都存在着脱氮除磷效率低下的难题,研发了一种具有提高除磷脱氮效能的污泥减量新工艺——HA-A/A-MCO工艺,采用水解酸化污水与释磷污泥的混合液刺激磷的厌氧释放并辅以外排富磷污水进行化学固定的方式除磷,通过试验研究,得出了一些有价值的结论。  相似文献   

16.
新型双泥生物反硝化除磷脱氮工艺   总被引:52,自引:3,他引:52  
在对生物脱氮与除磷机理进行深入研究后发现,生物脱氮与除磷是两个相对独立而又相互交叉的生理过程,其交叉点是部分聚磷菌在缺氧状态下的反硝化吸磷脱氮。在此基础上提出的新型双泥生物反硝化除磷脱氮工艺(由两个不同功能的SBR反应器组成)成功地解决了硝化菌与聚磷菌的泥龄之争。反硝化与聚磷菌厌氧释磷的矛盾等难题,该工艺运行稳定且处理效果良好,特别适合于处理BOD5/TP值低的污水。  相似文献   

17.
剩余污泥热处理过程中磷、氮和有机碳的释放特性   总被引:4,自引:0,他引:4  
采用热处理方法可以使剩余污泥中的磷快速释放出来,从而为进一步的磷回收创造有利条件。为了能更全面地了解热处理过程,通过与生物释磷过程进行比较,考察了剩余污泥热处理过程中磷、氮和有机碳的释放特性。试验结果表明,最佳的热处理参数是:热处理温度为50℃,处理时间为1 h,此时的净释磷浓度和释磷速率分别可达81.8 mg/L和9.98 mgPO43--P/(gMLSS.h),分别为生物释磷的3.7倍和2.6倍,而氮和有机碳的释放量较少,有利于磷的回收。  相似文献   

18.
聚磷菌PAO1-1的筛选及除磷特性   总被引:9,自引:1,他引:9  
从运行稳定的以生活污水为碳源的生物除磷污泥中筛选出一株聚磷菌PAO1-1,该菌株对普通活性污泥系统具有很好的强化作用,驯化10 d后可使除磷率由投菌前的44%提高到90%以上。对该菌株的形态、生理生化特征及16S rDNA序列进行分析后,鉴定该菌株为产碱杆菌属。该菌株对磷的平均吸收速率为13.8 mg/(g.h),处于“磷酸盐饥饿期”时对磷的吸收速率为19.2 mg/(g.h),比“非饥饿期”提高了39.1%。处于对数期的PAO1-1在厌氧条件下的无磷培养基中的释磷速率为11.8 mg/(g.h),稳定期释磷速率为7.0 mg/(g.h),释磷速率下降了40.7%。  相似文献   

19.
污泥回流比对A_2N反硝化除磷工艺脱氮除磷的影响   总被引:3,自引:1,他引:2  
以城市生活污水为研究对象,探讨了不同的超越污泥和回流污泥回流比对A2N工艺脱氮除磷的影响.在超越污泥回流比与回流污泥回流比相同且分别为0.3、0.4和0.6的条件下,A2N工艺对COD的平均去除率分别为92.5%、90.3%、91.6%,相应的出水COD为20.3、28.4、25.3 mg/L;对总氮的平均去除率分别为87.1%、90%、84.9%,出水总氮分别为6.75、5.43、6.95mg/L;对磷的平均去除率分别为99.5%、99.6%和99.0%,出水磷浓度分别为0.02、0.02、0.05mg/L.当回流比为0.4时,A2N系统的除污效果最好.研究还发现,超越污泥流量直接决定了未经硝化而直接进入缺氧池的氨氮量,进而影响出水氨氮浓度.因此,在保证缺氧池有足够污泥的前提下,应尽可能减小超越污泥流量,以降低出水氨氮浓度.  相似文献   

20.
以C/N值较低的模拟生活污水为处理对象,研究了当硝化液回流比保持不变时,混合液回流比(r)和污泥回流比(s)对MUCT工艺缺氧吸磷的影响.结果表明:当r和s均为1时,缺氧区2和缺氧区3中的DPB利用厌氧段储存的大量PHB为碳源,以硝酸盐氮为电子受体进行吸磷,吸磷量分别稳定在132.91 mg/h和105.38 mg/h左右,缺氧吸磷率维持在46.58%左右;r和s对COD总去除率的影响不大,系统对COD、NH+4 -N、TP的去除率分别达到91.86%、98.83%和90%,出水COD、NH+4-N和11P分别在30、0.8和0.9 mg/L以下.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号