首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
This study investigated the decolorization of the Reactive Red 2 in water using advanced oxidation processes (AOPs): UV/TiO2, UV/SnO2, UV/TiO2+SnO2, O3, O3+MnO2, UV/O3 and UV/O3+TiO2+SnO2. Kinetic analyses indicated that the decolorization rates of Reactive Red 2 could be approximated as pseudo-first-order kinetics for both homogeneous and heterogeneous systems. The decolorization rate at pH 7 exceeded pH 4 and 10 in UV/TiO2 and UV/TiO2+SnO2 systems, respectively. However, the rate constants in the systems (including O3) demonstrated the order of pH 10>pH 7>pH 4. The UV/TiO2+SnO2 and O3+MnO2 systems exhibited a greater decolorization rate than the UV/TiO2 and O3 systems, respectively. Additionally, the promotion of rate depended on pH. The variation of dye concentration influenced the decolorization efficiency of heterogeneous systems more significant than homogeneous systems. Experimental results verified that decolorization and desulfuration occurred at nearly the same rate. Moreover, the decolorization rate constants at pH 7 in various systems followed the order of UV/O3 > or = O3+MnO2 > or = UV/O3+TiO2+SnO2 > O3 > UV/TiO2+SnO2 > or = UV/TiO2 > UV/SnO2.  相似文献   

2.
Photodegradation of direct yellow-12 using UV/H2O2/Fe2+   总被引:6,自引:0,他引:6  
A detailed investigation of photodegradation of direct yellow-12 (DY12) using UV/H(2)O(2)/Fe(2+) has been carried out in a photochemical reactor. Experiments studied degradation as a function of concentration, decolorization and reduction in chemical oxygen demand (COD). The effect of operating parameters, such as UV, pH, amount of Fenton's reagent (H(2)O(2) and FeSO(4)), and amount of DY12 dye has also been determined. It has been observed that simultaneous utilization of UV irradiation with Fenton's reagent increases the degradation rate of DY12 dye. The dye quickly losses its color and there is an appreciable decrease in COD value, indicating that the dissolved organic have been oxidized. The kinetics of degradation of the dye in dilute aqueous solutions follows pseudo-first order kinetics. Final products detected at the end of the reaction include NO(3)(-), NO(2)(-), N(2)O, NO(2), SO(2), CO(2) and CO. Results indicate that dye degradation is dependent upon pH, UV-intensity, concentration of Fenton's reagent and dye. Acidic pH has been found to be more suitable in comparison to neutral and alkaline. The optimum concentration of Fenton's reagent (H(2)O(2)/Fe(2+)) was found as 1500/500 mg l(-1) for 50 mg l(-1) DY12 dye in water at pH 4. The results indicate that the treatment of DY12 dye wastewater with UV/Fe(2+)/H(2)O(2) system is efficient.  相似文献   

3.
Effects of H(2)O(2) dosage (0, 10, 50, 100 and 300 mg/l), reaction pH (11.9, 6.5 and 2.5) and initial color intensity (85, 80 and 60 color unit) on decolorization of alkaline 2,4,6-trinitrotoluene (TNT) hydrolysis effluents were investigated at a fixed UV strength (40 W/m(2)). Results indicated that UV/H(2)O(2) oxidation could efficiently achieve decolorization and further mineralization. Pseudo first-order decolorization rate constants, k, ranged between 2.9 and 5.4 h(-1) with higher values for lower H(2)O(2) dosage (i.e., 10 mg/l H(2)O(2)) when the decolorization occurred at the reaction pH of 11.9, whereas a faster decolorization was achieved with increase in H(2)O(2) dosage at both pH 6.5 and 2.5, resulting in the values of k as fast as 15.4 and 26.6 h(-1) with 300 mg/l H(2)O(2) at pH 6.5 and 2.5, respectively. Difference in decolorization rates was attributed to the reaction pH rather than to the initial color intensity, resulting from the scavenging of hydroxyl radical by carbonate ion. About 40% of spontaneous mineralization was achieved with addition of 10 mg/l H(2)O(2) at pH 6.5. Efficient decolorization and extension of H(2)O(2) longevity were observed at pH 6.5 conditions. It is recommended that the colored effluents from alkaline TNT hydrolysis be neutralized prior to a decolorization step.  相似文献   

4.
This study elucidates the decolorization of C.I. Reactive Red 2 (RR2) by homogeneous catalytic ozonation. The effects of pH and catalyst dosage were evaluated in O3/Mn(II), O3/Fe(II), O3/Fe(III), O3/Zn(II), O3/Co(II) and O3/Ni(II) systems. In O3/Mn(II), O3/Fe(II) and O3/Fe(III) systems, increasing the catalyst concentration increased the rate of RR2 decolorization; however, further increasing the catalyst concentration caused no further significant increase. When 0.6 mM catalyst was added, the decolorization rates of O3/Mn(II), O3/Fe(II), O3/Fe(III), O3/Zn(II), O3/Co(II) and O3/Ni(II) systems at pH 2 were 3.295, 1.299, 1.278, 1.015, 0.843 and 0.822 min(-1), respectively. Under all of the experimental conditions, the decolorization efficiency of catalytic ozonation exceeded that of ozonation alone. The decolorization rate markedly exceeds the TOC removal rate in all tested systems. The effect of the radical scavenger on the catalytic ozonation processes suggests that the decolorization reaction in catalytic ozonation systems proceeds by mainly radical-type mechanisms, except in the O3/Mn(II) system.  相似文献   

5.
Decolorization and mineralization of bakery's yeast industry effluent by photochemical advanced oxidation processes (AOPs) utilizing UV with hydrogen peroxide and Photo-Fenton, were investigated in a laboratory scale photo-reactor equipped with a 16 W low-pressure mercury vapor lamp. The Box-Wilson experimental design method was employed to evaluate the effects of major process variables (e.g. pH, oxidant dose, and irradiation time) on the decolorization efficiency. Response function coefficients were determined by regression analysis of the experimental data and prediction results agreed with the experimental results. The optimum hydrogen peroxide concentration and irradiation time were found to be 5 mM and 50 min at pH 3, respectively, for UV/H2O2 process. In the Photo-Fenton process application, maximum decolorization efficiency (96.4%) was obtained at the optimum reaction conditions that were 100 mM H2O2 and 1 mM Fe(II) doses at pH 3, and 10 min of irradiation time.  相似文献   

6.
In this study, the photocatalytic degradation of Direct Red 23 (Scarlet F-4BS) was investigated in UV/TiO2 system. The effect of catalyst loading and pH on the reaction rate was ascertained and optimum conditions for maximum degradation were determined. The results obtained showed that acidic pH is proper for the photocatalytic removal of Direct Red 23. In addition, the effects of several cations (Cu2+, Al3+, Cr3+, and Sn4+) and anions (BiO3(-), SO4(2-), and CN(-)) and C2H5OH were examined in this photocatalytic process. On the order hand, three types of catalysts (Fe2O3, SnO2, and ZnO) were compared with TiO2. After 90 min reaction, the relative decomposition order established was UV/TiO2>UV/SnO2>UV/Fe2O3>UV/ZnO.  相似文献   

7.
Decolorization of C.I. Reactive Red 2 by catalytic ozonation processes   总被引:2,自引:0,他引:2  
This study adopted O3, UV/TiO2/O3, O3/Mn(II) and O3/MnO2 systems to assess the decolorization efficiency of C.I. Reactive Red 2 (RR2). The decolorization rate increased with concentrations of Mn(II) and MnO2 in the ranges 0.05-0.1 and 0.05-0.8 g/l, respectively. However, when 0.5-3g/l TiO2 was added, the effect of TiO2 dosage for RR2 decolorization was insignificant in the UV/TiO2/O3 system. At pH 2, the decolorization rate constants of O3, O3/Mn(II) (0.05 g/l), O3/Mn(II) (0.1g/l), O3/Mn(II) (0.15 g/l), O3/MnO2 (0.05 g/l) and O3/MnO2 (0.8 g/l) were 0.816, 2.001, 3.173, 3.087, 1.040 and 1.648 min(-1), respectively. After 5 min of reaction, the decolorization rates followed the order O3/Mn(II)>O3/MnO2>O3>UV/TiO2/O3; however, the TOC removal did not vary among these systems. Adding ethanol reduced the decolorization rate of the UV/TiO2/O3 and O3/MnO2 systems and did not affect the decolorization rate of O3/Mn(II). Decolorization in UV/TiO2/O3, O3/Mn(II) and O3/MnO2 systems is suggested to proceed by mainly radical-, surface- and radical-type mechanisms, respectively. Additionally, direct ozonation cannot be ignored in O3/Mn(II) and O3/MnO2 systems.  相似文献   

8.
The decolorization kinetics of three commercially used Procion H-exl dyes was studied using a Fenton-like reagent. The effect of the major system parameters (pH, concentration of H(2)O(2) and Fe(3+) and initial dye concentration) on the kinetics was determined. For comparison, the effect of the use of UV irradiated Fenton-like reagent and of Fenton reagent on the kinetics was also examined. In addition, mineralization rates and the biodegradability improvement as well as the effect of the addition of Cl(-), CO(3)(2-) or HCO(3)(-) on the decolorization rates was studied. The reactions were carried out in a 300 ml stirred cylindrical reactor with the capability of UV irradiation. The dye half-life time goes through a minimum with respect to the solution pH between 3 and 4. It also exhibits a broad minimum with respect to Fe(3+) and H(2)O(2) at molar ratios of H(2)O(2)/Fe(3+) from about 100 to 10. The addition of CO(3)(2-) and HCO(3)(-) substantially reduces the decolorization rates, while this effect is significantly less pronounced with Cl(-). At an optimum range of parameters, the mineralization rate (TOC reduction) is very slow for the Fenton-like process (TOC decrease from an initial 49.5 to 41.1 mg/l after 30 min and to only 35.2 mg/l after 600 min), but it increases significantly for the photo-Fenton-like process (to TOC values of 39.7 and 11.4 mg/l, respectively). The biodegradability, as expressed by the BOD/COD ratio, increases significantly from an initial value of 0.11-0.55 for the Fenton-like and to 0.72 for the photo-Fenton-like processes.  相似文献   

9.
The decolorization of C.I. Acid Red 27 (AR27), a monoazo anionic dye, was studied in the ultraviolet radiation (UV) alone and UV plus hydrogen peroxide (UV/H(2)O(2)) processes. The experimental results indicated that the kinetics of both oxidation processes fit well by pseudo-first order kinetics. The reaction rate was sensitive to the operational parameters and increased with increasing H(2)O(2) concentration and light intensity. The reaction orders of H(2)O(2) concentration and light intensity in both processes were obtained with linear regression method. A regression model was developed for pseudo-first order rate constant (k(ap,UV/H(2)O(2))) as a function of the Cconcentration and UV light intensity. (k(ap,UV/H(2)O(2)))=(2 x 10(-4)I(0.75)(0) + k(3)I(1.38)(0)[H(2)O(2)](n)(0))phi(AR27). As a result of two opposing effects of H(2)O(2) concentration at low and high concentrations, n has a value of 0.49 and -0.39 and k(3) has a value of 3 x 10(-4) and 0.1 for the regions of 0 mg l(-1) < [H(2)O(2)](0) < 650 mg l(-1) and 650 mg l(-1) < [H(2)O(2)](0) < 1500 mg l(-1)1, respectively. PhiAR27 is the initial dye concentration correlation index for developing of model for different initial concentrations of AR27. This rate expression can be used for predicting k(ap,UV/H(2)O(2) at different conditions in UV alone and UV/H2O2 processes. The results show that UV alone cannot be an efficient method for decolorization of AR27 in comparison with UV/H(2)O(2) process, therefore the first term of the model can be neglected.  相似文献   

10.
This study makes a comparison between UV/Nano-TiO(2), Fenton, Fenton-like, electro-Fenton (EF) and electrocoagulation (EC) treatment methods to investigate the removal of C.I. Acid Blue 9 (AB9), which was chosen as the model organic contaminant. Results indicated that the decolorization efficiency was in order of Fenton>EC>UV/Nano-TiO(2)>Fenton-like>EF. Desired concentrations of Fe(2+) and H(2)O(2) for the abatement of AB9 in the Fenton-based processes were found to be 10(-4)M and 2 x 10(-3) M, respectively. In the case of UV/Nano-TiO(2) process, we have studied the influence of the basic photocatalytic parameters such as the irradiation time, pH of the solution and amount of TiO(2) nanoparticles on the photocatalytic decolorization efficiency of AB9. Accordingly, it could be stated that the complete removal of color, after selecting desired operational parameters could be achieved in a relatively short time, about 25 min. Our results also revealed that the most effective decomposition of AB9 was observed with 150 mg/l of TiO(2) nanoparticles in acidic condition. The effect of operational parameters including current density, initial pH and time of electrolysis were studied in electrocoagulation process. The results indicated that for a solution of 20 mg/l AB9, almost 98% color were removed, when the pH was about 6, the time of electrolysis was 8 min and the current density was approximately 25 A/m(2) in electrocoagulation process.  相似文献   

11.
A kinetic investigation into the photo-degradation of aqueous diethyl phthalate by Fenton reagent was conducted in this study. The obtained results showed the enhancement of diethyl phthalate (DEP) decomposition by UV irradiation with the Fenton reaction. It was found that H2O2 concentration, Fe2+ concentration, and aqueous pH value were the three main factors that could significantly influence the degradation rates of DEP. The highest degradation percentage (75.8%) of DEP was observed within 120 min at pH 3 in the UV/H2O2/Fe2+ system, with original H2O2 and Fe2+ concentrations of 5.00 x 10(-4) and 1.67 x 10(-4)mol L(-1), respectively. The present study provides an effective approach to the treatment of wastewater containing DEP.  相似文献   

12.
An advanced oxidation process, UV/H2O2, was applied for decolorization of a di-azo dye (acid black 1). The effects of operating parameters such as hydrogen peroxide dosage, UV dosage and initial dye concentration, on decolorization have been evaluated. The acid black 1 solution was completely decolorized under optimal hydrogen peroxide dosage of 21.24 mmol/l and UV dosage of 1400 W/l in less than 1.2 min. The decolorization rate followed pseudo-first order kinetics with respect to the dye concentration. The rate increased linearly with volumetric UV dosage and nonlinearly with increasing initial hydrogen peroxide concentration. It has been found that the degradation rate increased until an optimum of hydrogen peroxide dosage, beyond which the reagent exerted an inhibitory effect. For real case application, an operation parameter plot of rate constant was developed. To evaluate the electric power and hydrogen peroxide consumption by UV/H2O2 reactor, 90% color removal was set as criteria to find the balance between both factors.  相似文献   

13.
In this work, the effect of incorporation of M2+ species, i.e. Co2+, Mn2+ and Ni2+, into the magnetite structure to increase the reactivity towards H2O2 reactions was investigated. The following magnetites Fe3-xMnxO4, Fe3-xCoxO4 and Fe3-xNixO4 and the iron oxides Fe3O4, gamma-Fe2O3 and alpha-Fe2O3 were prepared and characterized by M?ssbauer spectroscopy, XRD, BET surface area, magnetization and chemical analyses. The obtained results showed that the M2+ species at the octahedral site in the magnetite strongly affects the reactivity towards H2O2, i.e. (i) the peroxide decomposition to O2 and (ii) the oxidation of organic molecules, such as the dye methylene blue and chlorobenzene in aqueous medium. Experiments with maghemite, gamma-Fe2O3 and hematite, alpha-Fe2O3, showed very low activities compared to Fe3O4, suggesting that the presence of Fe2+ in the oxide plays an important role for the activation of H2O2. The presence of Co or Mn in the magnetite structure produced a remarkable increase in the reactivity, whereas Ni inhibited the H2O2 reactions. The obtained results suggest a surface initiated reaction involving Msurf2+ (Fe, Co or Mn), producing HO radicals, which can lead to two competitive reactions, i.e. the decomposition of H2O2 or the oxidation of organics present in the aqueous medium. The unique effect of Co and Mn is discussed in terms of the thermodynamically favorable Cosurf3+ and Mnsurf3+ reduction by Femagnetite2+ regenerating the active species M2+.  相似文献   

14.
Ji F  Li C  Zhang J  Deng L 《Journal of hazardous materials》2011,186(2-3):1979-1984
Heterogeneous photo-Fenton process using LiFe(WO(4))(2) as catalyst was studied to degrade Methylene blue (MB) dye in aqueous solution. The results indicated that LiFe(WO(4))(2) could effectively catalyze the decolorization of MB in the presence of UV light and H(2)O(2). The effects of different parameters such as amounts of catalyst, H(2)O(2) concentration, initial pH of the dye solution, initial dye concentration and UV light intensity on the decolorization efficiency of the process were investigated. It was found that LiFe(WO(4))(2) possessed a wide applicable pH range. X-ray photoelectron spectroscopy (XPS) was applied to investigate the transformation between Fe(III) and Fe(II). It was also observed that catalytic behavior could be reproduced in consecutive experiments without a considerable drop in the process efficiency.  相似文献   

15.
The comparison of different advanced oxidation processes (AOPs), i.e. ultraviolet (UV)/TiO(2), O(3), O(3)/UV, O(3)/UV/TiO(2), Fenton and electrocoagulation (EC), is of interest to determine the best removal performance for the destruction of the target compound in an Acid Orange 6 (AO6) solution, exploring the most efficient experimental conditions as well; on the other hand, the results may provide baseline information of the combination of different AOPs in treating industrial wastewater. The following conclusions can be drawn: (1) in the effects of individual and combined ozonation and photocatalytic UV irradiation, both O(3)/UV and O(3)/UV/TiO(2) processes exhibit remarkable TOC removal capability that can achieve a 65% removal efficiency at pH 7 and O(3) dose=45mg/L; (2) the optimum pH and ratio of [H(2)O(2)]/[Fe(2+)] found for the Fenton process, are pH 4 and [H(2)O(2)]/[Fe(2+)]=6.58. The optimum [H(2)O(2)] and [Fe(2+)] under the same HF value are 58.82 and 8.93mM, respectively; (3) the optimum applied voltage found in the EC experiment is 80V, and the initial pH will affect the AO6 and TOC removal rates in that acidic conditions may be favorable for a higher removal rate; (4) the AO6 decolorization rate ranking was obtained in the order of O(3)相似文献   

16.
The zero-valent iron (ZVI) reduction succeeds for decolorization, while UV/H(2)O(2) oxidation process results into mineralization, so that this study proposed an integrated technique by reduction coupling with oxidation process in order to acquire simultaneously complete both decolorization and mineralization of C.I. Acid Black 24. From the experimental data, the zero-valent iron addition alone can decolorize the dye wastewater yet it demanded longer time than ZVI coupled with UV/H(2)O(2) processes (Red-Ox). Moreover, it resulted into only about 30% removal of the total organic carbon (TOC), which was capable to be effectively mineralized by UV/H(2)O(2) process. The proposed sequential ZVI-UV/H(2)O(2) integration system cannot only effectively remove color and TOC in AB 24 wastewater simultaneously but also save irradiation power and time demand. Furthermore, the decolorization rate constants were about 3.77-4.0 times magnitude comparing with that by UV/H(2)O(2) process alone.  相似文献   

17.
Photochemical mineralization of di-n-butyl phthalate with H2O2/Fe3+   总被引:1,自引:0,他引:1  
This study evaluated the performance of photo-Fenton reaction initiated by the UV irradiation with H(2)O(2)/Fe(3+), denoted as UV/H(2)O(2)/Fe(3+), to decompose di-n-butyl phthalate (DBP) in the aqueous solution. The concentration of total organic carbon (TOC) was chosen as a mineralization index of the decomposition of DBP by the UV/H(2)O(2)/Fe(3+) process. A second-order kinetic model with respect to TOC was adequately adopted to represent the mineralization of DBP by the UV/H(2)O(2)/Fe(3+) process. The experimental results of this study suggested that the dosages with 4.74 x 10(-5) mol min(-1)L(-1) H(2)O(2) and initial Fe(3+) loading concentration of 4.50 x 10(-4) mol L(-1) in the solution at pH 3.0 with 120 microW cm(-2) UV (312 nm) provided the optimal operation conditions for the mineralization of DBP (5 mg L(-1)) yielding a 92.4% mineralization efficiency at 90 min reaction time.  相似文献   

18.
The decolorization of azo dye C.I. Acid Yellow 23 (AY23) by Fenton process was investigated. The decolorization rate is strongly dependent on the initial concentrations of the Fe(2+) and H(2)O(2). The optimum operational conditions were obtained at pH 3. A kinetic model has been developed to predict the decolorization of AY23 at different operational conditions by Fenton process. The model allows to simulate the system behavior involving the influence of hydrogen peroxide, Fe(II) and dye concentrations.  相似文献   

19.
Two UV-based advanced oxidation processes (AOPs), UV/H2O2 and UV/TiO2, were tested in batch reactor systems to evaluate the removal efficiencies and optimal conditions for the photodegradation of methyl tert-butyl ether (MTBE). The optimal conditions at an initial MTBE concentration of 1 mM ([MTBE]0=1 mM) were acidic and 15 mM H2O2 in UV/H2O2 system, and pH 3.0 and 2.0 g/l TiO2 in UV/TiO2 suspended slurries system under 254-nm UV irradiation. Under the optimal conditions, MTBE photodegradation during the initial period of 60 min in UV/H2O2 and UV/TiO2 systems reached 98 and 80%, respectively. In both systems, MTBE photodegradation decreased with increasing [MTBE]0. While MTBE photodegradation rates increased with increasing dosage of H2O2 (5-15 mM) and TiO2 (0.5-3 g/l), further increase in the dosage of H2O2 (20 mM) or TiO2 (4 g/l) adversely reduced the MTBE photodegradation. Pseudo first-order kinetics with regard to [MTBE] can be used to describe the MTBE photodegradation in both systems. The pseudo first-order rate constants linearly increased with the increase in the molar ratio of [H2O2]0 to [MTBE]0 in UV/H2O2 system and linearly increased with the decrease in [MTBE]0 in UV/TiO2 system.  相似文献   

20.
This study discusses the effects of ultrasound (US) irradiation on the decolorization of C.I. Reactive Red 198 (RR198) in UV/ZnO system. The influences of ZnO dosage, pH and the addition of NaCl or a radical scavenger were evaluated. The decolorization rate of RR198 increased with the ZnO dosage in 0.1-1g/l and with pH in the UV/ZnO system. US accelerated the decolorization of RR198 in the UV-based system. The enhancement in the presence of NaCl can be attributed to an increase in the partitioning of RR198 upon cavitation implosion in US/ZnO system. At pH 7, the decolorization rate constants of UV/US/ZnO, UV/ZnO, US/ZnO, UV/US and US were 0.0739, 0.0534, 0.0022, 0.0020 and 0.0013 min(-1), respectively. The decolorization rate was effectively inhibited by adding 1-butanol to UV/ZnO and UV/US/ZnO systems, suggesting that the main mechanism of RR198 destruction is chemical oxidation by hydroxyl radicals in the bulk liquid. The experimental results revealed that the UV/US/ZnO system cannot only completely decolorize RR198 but can effectively mineralize RR198.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号