首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 140 毫秒
1.
用草酸溶液从负载钕的P507中直接反萃取沉淀钕   总被引:1,自引:0,他引:1  
介绍了在自制的三相反萃取槽中用草酸溶液从负载钕的P507有机相中直接反萃取沉淀钕的半工业试验结果。试验结果表明,用0.3~0.5mol/L的草酸溶液从含钕0.0533和0.11135mol/L的有机相中直接反萃取沉淀钕,控制沉淀母液中草酸浓度0.2mol/L,返回使用80%的沉淀母液,在接触时间10~40min范围内,获得的Nd2O3的纯度≥99.88%。产品粒度D50在3.76~4.27μm之间,氯质量分数0.01%,非稀土杂质的质量分数符合99.9%Nd2O3产品质量要求。  相似文献   

2.
对P507-N235双溶剂无皂化萃取体系的直接沉淀工艺进行研究,将传统先反萃后沉淀工艺合二为一,从酸度、流比、草酸用量及搅拌时间等方面,考察盐酸-草酸水溶液作为P507-N235-磺化煤油体系沉淀剂直接沉淀的效果.实验以稀土钕直收率来表征实验效果的差异性.研究结果表明:通过加入盐酸调节酸度并控制一定的流比、草酸用量和搅拌时间,可大大提高沉淀的效果.最优草酸沉淀条件为:酸度0.40 mol/L、流比1:1、草酸理论用量的120 %,搅拌时间5 min,其单级钕直收率可达97 %以上.反萃后有机相结构未发生改变,萃取能力可达到新有机相的90 %.   相似文献   

3.
为简化离子型稀土矿提取稀土工艺,采用离子交换树脂富集矿山浸出母液技术制备高纯碳酸稀土用于有机溶料,系统考察了P507煤油萃取剂体系溶解碳酸镨钕过程中,碳酸镨钕预处理方式、碳酸镨钕加入量、水相pH、杂质铝含量、反应时间和相比等因素对萃取效果的影响。结果表明,以湿碳酸镨钕为原料,其加入量控制为有机相负载稀土浓度0.16~0.18 mol/L,水相pH=2.0~3.0,相比O/A=1,反应时间12 min,碳酸镨钕中的铝含量小于2.5%,30 ℃条件下,碳酸镨钕溶解完全,分相效果好,有机相中稀土浓度达0.177 1 mol/L,萃取率为98.13%。采用4级逆流连续萃取试验,经16次反应平衡后有机相出口级稀土浓度为0.166 8 mol/L,水相出口稀土浓度为0.001 1 mol/L。采用P507-煤油萃取剂体系溶解碳酸镨钕同步实现了空白有机相的皂化及萃取过程,碳酸稀土直接作为原料省略了酸分解工序,缩短了工艺流程,同时用作皂化剂,降低了化工材料消耗、废水排放量及环保成本,为简化稀土萃取分离提供了应用基础。  相似文献   

4.
以稀土草酸沉淀母液为原料,用P350作为萃取剂,磺化煤油为稀释剂,对原料中的草酸和盐酸进行萃取分离研究。试验研究了萃取时间、萃取相比、萃取级数、原料中草酸和盐酸的浓度对萃取草酸的影响;研究了反萃相比、反萃级数对反萃草酸的影响。以纯水为反萃剂,进行了12级的分馏萃取试验,萃取段和反萃取各为6级,O∶A比分别为2∶1和5∶1,回收的草酸溶液浓度为22. 39g/L,草酸的萃取率为95. 6%,反萃率为82. 8%,草酸的总回收率为85. 3%。  相似文献   

5.
采用P204与磺化煤油萃取钕,通过观察振荡时间、相比对萃取钕的影响与盐酸浓度、相比对钕的反萃影响,绘制等温线,并制定实验过程.结果显示,当P204与磺化煤油体积比为2 ∶ 1,振荡时间为8 min时,萃取率最高,为95%;当盐酸浓度为3 mol/L,有机相与盐酸体积比为2 ∶ 1时,反萃率最高,为89.1%.  相似文献   

6.
本文采用溶剂萃取法,用有机次磷酸萃取剂从富含稀土元素镧(La)、钕(Nd)、钇(Y)、铈(Ce)的硝酸溶液中提取稀土。选择盐酸为反萃剂。考察了酸度、萃取剂浓度、相比和萃取时间对萃取率和反萃率的影响,结果表明,二异丁基膦酸萃取稀土的最佳条件为:室温,酸度0.2mol/l,萃取剂浓度40%,A/O比1:5,萃取时间15min,镧(La)、钕(Nd),铈(Ce)和钇(Y)分别为41.68%、81.30%、81.29%和100%。当利用盐酸作为反萃实验的反萃剂时其最佳条件为:室温,初始水相稀土溶液为0.3 mol/L,反萃剂盐酸为6 mol/L,负载有机相与反萃剂盐酸溶液的体积比为1:6,将反萃的震荡时间改变为5min,应用上述条件的镧(La)、钕(Nd)、铈(Ce)、钇(Y)的反萃率分别为92.45%、94.88%、95.76%、93.34%。有机次膦酸对稀土元素(La)、钕(Nd)、铈(Ce)和钇(Y)的萃取效率不同。钇的提取率高于镧、钕和铈。它是一种有机次膦酸,对轻稀土元素亲和力低,对重稀土元素亲和力强。  相似文献   

7.
研究用硫酸溶液从载锰、镁离子的P204有机相中反萃取锰并再生有机相,考察反萃取过程中各参数对锰、镁离子反萃取的影响,确定较优工艺条件。结果表明:在温度35℃、硫酸溶液浓度0.5mol/L、振荡时间30min、静置分相时间40min、相比Vo∶Va=2∶1条件下,经4级反萃取,锰离子反萃取率为99.9%,出水中锰离子质量浓度为20.74g/L,有机相中残留镁离子质量浓度为0.031g/L,有机相得到有效再生。  相似文献   

8.
以含有铜离子、铁离子和锰离子的氯化铋溶液为萃原液,磷酸三丁酯(TBP)为萃取剂,通过萃取—反萃取沉淀—热分解工艺直接制备超细氧化铋粉末,考察了萃取时间、萃取温度、有机相体积分数、溶液中氯离子质量浓度和相比对溶液中铋、铁萃取率的影响。试验结果表明:在铋离子初始质量浓度19g/L、氯离子质量浓度46.0g/L、铁离子质量浓度1.5g/L、TBP体积分数60%、萃取温度30℃、有机相与水相体积比(相比)1∶1条件下,经4级逆流萃取,铋萃取率达98.5%,铁萃取率为49.4%;经过稀盐酸洗涤后,有机相中铁洗脱率为99.7%;用草酸作反萃取剂反萃取铋,铋的一级反萃取率即达99.3%,反萃取产物为草酸铋;草酸铋热分解得到纯度为99.8%的α-Bi2O3。  相似文献   

9.
研究了P204从硫酸体系萃取镓的性能,分别考察了料液酸度、萃取剂浓度、时间、浓度等对镓萃取与反萃的影响并绘制等温线,确定并模拟逆流试验过程。结果表明:料液含0.3g/L Ga^3+,pH=1.2,有机相采用20%P204(体积分数)+磺化煤油,按相比O/A=1∶3,25℃萃取8min,经过3级逆流萃取,镓萃取率可达到99.33%,负载有机相用1.0mol/L H2SO4溶液反萃,按相比O/A=10∶1,反萃温度25℃,反萃时间10min,经过3级逆流反萃,镓反萃率达98.99%,镓浓度富集近30倍。反萃液中的镓经氨水中和沉淀、焙烧后,可得到氧化镓产品。  相似文献   

10.
P507-N235复合有机相能很好的萃取分离稀土元素.为有效利用P507-N235复合有机相中的余酸,对载酸有机相分解稀土的试验进行了研究.结果表明,分解碳酸钕时,较优的工艺参数为料浆浓度72.5 g/L、浸出时间30 min、相比VO:VA=1:1(有机相与水相的体积比, 下同),在此条件下,30%P507+25%N235+45%煤油体系对Nd的萃取容量为20.16 g/L(按REO计,下同),有机相中余酸利用率为52.6%,且体系分相效果较好;分解氢氧化钕时,较优的工艺参数为料浆浓度73.3 g/L、浸出时间50 min、相比VO:VA=1:1,此时Nd的萃取容量可达21.6 g/L,有机相中余酸利用率为53.7%.实验证明了此方案的可行性,有机相中的残酸利用效果较好,可以实现载酸有机相的循环使用.   相似文献   

11.
Neodymium naphthenate-loaded organic phase stripping using sodium oxalate solution was studied to explore the feasibility of synchronous rare earth-loaded organic phase stripping, rare earth precipitation, and blank organic phase saponification. Experimental results show that loaded organic phase stripping, rare earth precipitation, and blank organic phase saponification can be realized simultaneously. When using 20% excess of sodium oxalate over the stoichiometry with the volume ratio of organic phase to aqueous phase of 1:1 at 25 °C for 40 min, the single stage stripping rate and saponification value are about 40% and 0.29 mol/L, respectively. After 16 stages of countercurrent continuous stripping, the stripping rate of neodymium can reach 99%, the saponification value is 0.42 mol/L, the Nd3+ concentration in saponified organic phase is less than 0.0020 mol/L, and the main phase in precipitation is Nd2(C2O4)3·10H2O. Afterwards, this saponified organic phase can be used in the extraction of NdCl3 solution, and then the loaded organic phases (neodymium naphthenate) with 0.16 mol/L Nd3+ can be retrieved. The morphology, particle size distribution, and composition of the Nd2(C2O4)3·10H2O products are similar to those of the current direct precipitation products. The neodymium oxide prepared by continuous calcination of neodymium oxalate meets the national standard of China (GB/T 5240?2015). These results prove the feasibility of stripping neodymium naphthenate-loaded organic phase by using sodium oxalate solution. Sodium oxalate can serve as a stripping agent, a saponifier, and a precipitator, thereby simplifying rare earth extraction and separation. This study provides theoretical and technical support for the development of a novel method for rare earth extraction and separation.  相似文献   

12.
以不同酸度的盐酸和硫酸为反萃剂从DIBK-TBP体系和DIBK-P204体系负载有机相中反萃锆、铪。结果表明,对DIBK-TBP体系负载有机相,先采用酸度为2.0mol/L的盐酸水溶液对锆进行反萃,单级反萃率达85%,得到富锆液,然后用酸度为8.0mol/L的硫酸水溶液对铪进行反萃,单级反萃率达90%,得到少锆的铪液;对DIBK-P204体系负载有机相,先采用酸度为3.0mol/L的硫酸水溶液对铪进行反萃,单级反萃率达90%,得到少锆的铪液,然后采用酸度为2.0mol/L的盐酸水溶液对锆进行反萃,单级反萃率达70%,得到少铪的锆液。采用盐酸和硫酸可顺利实现对DIBK体系负载有机相中锆、铪的反萃取。  相似文献   

13.
P204-Cyanex 923磺化煤油用于铟的萃取和反萃研究   总被引:2,自引:0,他引:2  
采用正交试验系统研究和对比了高原条件下P204磺化煤油和P204-Cyanex 923磺化煤油对铟的萃取和反萃条件。研究表明,适量添加Cyanex 923可在不影响萃取率的同时,降低有机相对铁的萃取;3 mol/L HCl+1 mol/L ZnCl2溶液对P204-Cyanex 923磺化煤油具有良好的反萃性能。  相似文献   

14.
对去除铁、砷、钙、镁后的硫酸镍溶液,采用钠皂化的P507萃取剂分离铜、锌、钴.考察了皂化率、P507体积分数、平衡pH值、相比、时间、温度以及逆流萃取级数对萃取效果的影响.同时考察了负载有机相反萃过程中硫酸浓度、反萃相比、时间对铜、锌、钴反萃效果的影响.结果表明,当萃取有机相组成为35 % P507+65 %磺化煤油,钠皂化率为65 %,相比(VO/VA)为1:1,平衡pH值为4,25 ℃,萃取时间为5 min,经3级逆流萃取,铜、锌、钴的萃取率分别为96.73 %、99.87 %、94.17 %.对负载有机相经过酸性去离子水(pH=3~4)洗涤后,用1 mol/L硫酸溶液,时间为5 min,反萃相比(VO/VA)为1:1.在此条件下,铜、锌、钴的反萃率分别为99.94 %、99.94 %、99.86 %.   相似文献   

15.
分别以盐酸、硫酸、碳酸氢铵、碳酸铵和碳酸钾的水溶液为反萃剂,对比研究了其对DIBK-P350体系和DIBK-TOPO体系负载有机相中铪和锆的反萃性能。结果表明,盐酸、硫酸、碳酸氢铵和碳酸钾对这两个体系负载有机相中铪和锆的反萃率或分离系数较低,不适合作为该体系的反萃剂,而碳酸铵((NH_4)_2CO_3)较适合作为反萃剂。在室温、油水相比O/A=1/2、(NH_4)_2CO_3浓度1.5~2.0mol/L的优化条件下,DIBK-P350体系负载有机相中(NH_4)_2CO_3对铪的单级反萃率和锆铪的分离系数分别达到91.61%和6.94。对DIBK-TOPO体系负载有机相反萃的优化条件为:室温、油水相比O/A=1/2、(NH_4)_2CO_3浓度2.0 mol/L,(NH_4)_2CO_3对铪的单级反萃率和锆铪的分离系数分别达94.33%和15.30。  相似文献   

16.
采用皂化的P204+磺化煤油体系共萃铬、铁,选择性反萃分离铬、铁工艺,从电镀污泥硫酸浸出液中回收富集铬.考察皂化率、P204浓度、料液初始pH值、萃取时间、温度、相比等因素对于萃取效果的影响,考察反萃剂组成、浓度、相比等因素对反萃效果的影响.结果表明:P204皂化率及浓度是影响铬的萃取率重要因素.在萃取有机相组成为30 %P204+70 %磺化煤油,皂化率为70 %,料液pH=2.42,VO/VA=1/1,萃取温度28 ℃,振荡时间5 min条件下,经6级逆流萃取达到平衡之后,出口水相铬浓度为0.9 mg/L左右,铬萃取率为99.99 %.采用2段反萃工序有效的分离铬铁:采用2 mol/L硫酸反萃,相比VO/VA=5/1,温度32 ℃,振荡时间5 min,经过3级逆流反萃,铬反萃率为97.5 %,铬浓度富集到29.5 g/L,铁浓度为10 mg/L;反萃铬后负载有机相再用氢氧化钠溶液反萃铁.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号