首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
现代船舶的舱室需满足严格的噪声级限值要求,在设计阶段,对大型船舶进行舱室噪声预报和开展降噪设计具有实际工程意义。以6 500吨油化船为研究对象,利用声学分析软件VA One建立声学模型,并基于统计能量分析法对重要舱室进行噪声预报。结果显示,全船重要舱室的噪声级均严重超标,故需进行降噪设计。首先,采用分离变量法分析噪声源,区分主要噪声源与次要噪声源,对主要噪声源进行隔振、隔声处理。其次,通过子系统能量分布云图明确船舶舱室噪声的主要传递路径,并据此进行进一步的降噪设计。采取降噪措施后,全船重要舱室噪声级均达到限值要求。研究结果可用于工程实际中6 500吨油化船的降噪设计,同时可为其他类型船舶的降噪设计提供参考。  相似文献   

2.
振声能量传递路径是船舶舱室噪声控制的重要依据之一。对中高频振声问题采用统计能量分析(SEA)求解,引入SEA系统传递路径的概念,并结合图论提出了舱室噪声传递的SEA赋权图法。将SEA系统等效为结点和有向边组成的有向图G_(SEA),噪声传递路径问题转变为求解G_(SEA)中的最大权重路径问题,通过偏离算法得到的K主要路径即为能量传递的主路径。以某船机舱传递到住舱中的能量传递路径为例,首先确定不同振声源在目标舱室中产生的噪声分量,选取对目标舱室影响最大子系统为路径分析对象,然后使用SEA赋权图法求解主要传递路径,从而揭示能量在结构和声腔中的传播机理,为船舶降噪优化提供指导。  相似文献   

3.
机舱集控室是船舶最难的噪声控制对象之一。利用VA One软件,基于统计能量法(SEA),建立某平台工作船的SEA模型,进行舱室噪声预测,并与实测值进行比较。分析集控室和它相连所有子系统间的声能量输入关系,得到集控室声能量组成及排序情况,确定空气声和结构声对集控室的影响,将此作为减振降噪依据。根据集控室噪声频谱特性及软件NCT功能,采用声学包设计方法,用不同材料组合对集控室各个面进行降噪处理,最终有效地控制集控室噪声,并为船舶舱室降噪提供一个参考方法。  相似文献   

4.
基于传递路径分析法结合房间声学常数对船舶舱室噪声进行预报,噪声传递路径传递损耗按照空气噪声和结构噪声分别计算,结合房间常数计算接收点舱室噪声声压级。以传递路径分析法为基础,提出舱室噪声预报的通用计算流程,结合数值计算(SEA)方法确定及优化传递路径分析法中的重要计算参数(传递损耗及传递函数),并通过某内河汽车运输船舱室噪声预报实例,发现基于此方法的计算预报值与实测值吻合良好,验证了其计算参数的可靠性,从而提高了该方法的计算精度。  相似文献   

5.
以一艘高噪声指标要求的电力推进船舶为研究对象,基于统计能量理论利用VA One软件进行全船的舱室声能量分析及降噪预测设计研究。通过评估分析主要噪声源的声能量贡献度,实现降噪指标的定量分配,针对关键舱室的噪声比50 d B(A)限值高出约40 d B(A)的降噪难点,采用柴油发电机组低噪声箱装体设计,应用推进电机硬弹性复合隔振、基座阻尼减振等技术;分析主要噪声源能量传递路径,在路径上采取吸隔声处理措施。降噪处理后,实船效果满足噪声指标要求。  相似文献   

6.
为避免高噪声环境对船员及设备造成损伤,现代船舶需满足严苛的静音设计要求。以福建东南造船有限公司承建的某300吨级渔政船为研究对象,基于统计能量法(Statistical Energy Analysis,SEA)建立该船的声腔结构模型,再利用声学分析软件VA one对各舱室声压级进行计算。在此基础上,探究辐射噪声和结构噪声激励对舱室声压级的影响规律,并据此设计相应的降噪方案。研究表明:在相同频段内,控制主机辐射噪声比控制结构噪声能更有效地降低舱室声压级,而在不同频段内同一激励对舱室声压级的影响不同;未采取降噪措施前,该渔政船有5个主要舱室噪声超标,其最大超标量为15.1 dB;采取降噪措施后,各主要舱室声压级均有效降低,最大降噪量达17.7 dB,满足渔政船的静音要求。相关研究可为其他类型船舶及多模态复杂结构的降噪设计提供方法和选材参考。  相似文献   

7.
以某航海教学实习船机舱为原型,将此振动-声辐射耦合系统简化为箱形多腔结构,建立多腔结构及其单元腔室有限元模型,考虑液舱布置与充液、激励源处设置隔振器等情况,对结构进行频率响应分析,运用声学边界元法对舱室噪声进行预报,通过对舱室中心场点声学贡献较大的板件进行约束阻尼处理,有效降低舱室噪声。并进行船舶机舱模型振动-声辐射实验。分析表明:研究三舱段船舶机舱模型振声性能时,充液及增加充液舱数,对模型固有频率影响明显,通过设置隔振器能有效降低舱室振声等级,在非激励源舱室敷设约束阻尼材料,也可起到较好降噪作用。  相似文献   

8.
双层圆柱壳体水下振动噪声结构传递路径分析   总被引:5,自引:4,他引:1       下载免费PDF全文
为了实现水下双层圆柱壳体噪声源及传递路径的识别、量化,建立了水下结构振-声传递路径分析(TPA)模型,模型借助互谱技术、平均技术及加窗来进行频响函数估计,并结合正则化方法改善频响函数矩阵求逆的病态问题。进行了双层圆柱壳体水下振动-声辐射试验,实现噪声与结构振动数据的同时基采集。编制TPA程序计算得到合成噪声响应与实测结果吻合很好,利用频谱贡献云图及数据对比的方式分析了传递路径对壳外目标点噪声的贡献,结果与分布运转法所得一致,进而从传递路径的角度找出了对壳外噪声起主导作用的环节。可见,建立的水下双层圆柱壳体结构振-声TPA方法可以有效地识别、量化主要噪声源和噪声的传递路径,并且能够指导水下噪声实时预报和采取针对性的减振降噪措施。  相似文献   

9.
轨道交通引起的环境振动噪声问题持续增加,即使目前具有多种控制效果良好的减振降噪措施,但仍有望做进一步的提升。在该研究中提出了一种新型的槽型轨道动力吸振器,将声学黑洞波动控制技术与动力吸振原理相结合。该吸振器设计的目标是保证主结构强度与刚度的前提下,采用附加的声学黑洞阻尼振子作为吸能单元,对主结构的振动能量进行传递、吸收与耗散。为了研究声学黑洞型动力吸振器对槽型轨道振动特性和声辐射特性的影响,利用仿真分析对不同类型的动力吸振器下槽型轨道的位移导纳和振动衰减率进行了评估;采用滚动噪声预测模型计算分析了声学黑洞型动力吸振器的降噪效果并探究了其参数对轮轨振动噪声的影响规律。结果表明:槽型轨在800~1 000 Hz频段内的一阶pinned-pinned在未采取措施的情况下振动响应显著,振动衰减率仅为0.68 dB/m,在安装了声学黑洞型动力吸振器之后轨道结构的振动衰减率上升到1.80 dB/m,提高率可达265%。  相似文献   

10.
为了控制结构振动引起的船舶辐射噪声,截取某型舰艇的机舱双层底并按比例缩减,建立了双层底结构的有限元模型,以舱室辅机设备离心泵机脚振动加速度作为单激励,离心泵与激振机激振力代表多激励,在20-400Hz频段内对单激励与多激励下双层底结构的频率响应进行分析,并计算了底桁和实肋板的结构声强,根据各实肋板和底桁的声强贡献度及声强矢量图对峰值频率的主要传递路径进行辨识排序;以此为基础在主要传递路径上布置阻振质量块,用声学边界元方法计算了双层底结构的远场辐射声,以研究频段内合成辐射声功率级为评价指标验证减振措施的可行性。研究发现双层底结构在单激励和多激励下的主要传递路径都位于激励侧下方,单激励变成多激励后系统的最大响应峰值频率由33Hz变成87Hz,底桁和实肋板的Y向结构声强和增大一个数量级;在主要振动传递路径布置阻振质量使双层底结构的声辐射减少了8.2dB。  相似文献   

11.
高速铁路减振CRTS-Ⅲ型无砟轨道桥梁振动噪声研究   总被引:2,自引:0,他引:2  
以减振CRTS-Ⅲ型轨道系统为研究对象,基于车辆、轨道、桥梁系统二维模型,利用动柔度法分别计算车辆和轨道系统的动柔度,建立频率域的车辆-轨道耦合模型,计算桥梁振动加速度并与常规CRTS-Ⅲ型轨道系统相比较。采用有限元法计算桥梁结构近场点和远场点噪声,探讨桥梁各子结构板对近场点和远场点噪声的声贡献率。计算结果表明:与常规CRTS-Ⅲ型轨道系统相比,减振CRTS-Ⅲ型轨道系统下,桥梁的振动峰值加速度减小69.9%,加速度平均值降低60.4%;近场和远场噪声计算点声压级分别降低8.4、8.5dB;桥梁顶板声贡献率分别达65.28%,68.30%。采用减振CRTS-Ⅲ型轨道系统能够有效的降桥梁结构噪声。声贡献率计算表明顶板振动是导致桥梁噪声的主要噪声源。  相似文献   

12.
舱室空气噪声快速预报对船舶早期声学设计有着重要作用。在传统"S-P-R"系统分析预报方法的基础上,引入"声学单元"的概念,考虑舱室间噪声能量的耦合关系,将"开环"计算转化为"闭环"计算,提高了计算精度。该预报方法被应用到某大型油轮的噪声预报中,其计算结果与SEA软件比较可见,"闭环S-P-R"能有效克服"开环S-P-R"在大型复杂船舶结构舱室空气噪声预报的不足。  相似文献   

13.
通风空调系统辐射噪声是船舶舱室内最主要的噪声源,吸声处理是降低舱室噪声的一种有效途径。为考察吸声处理对降低舱室噪声的效果,建立通风空调管路噪声向船舶舱内辐射的有限元法数值预报模型。以实测的管口声压为噪声源,研究舱室壁面及通风管路吸声对舱室降噪效果的影响,进而用于指导和改进船舶舱室的声学设计。对通风空调系统改变后的舱室噪声进行预报,并针对较高的噪声进行声学设计,使舱室噪声问题得到解决。  相似文献   

14.
飞机舱室内噪声的预测对改进飞机性能具有重要意义,并为实际飞机设计和噪声控制措施提供理论依据。文章建立了飞机壁板隔声的统计能量分析模型,研究了外部声场激励和振动激励通过飞机壁板的隔声量,预测了飞机舱室内的声场分布。在此基础上运用面向对象及可视化技术,开发出相应的专用软件,该软件界面友好,用户可根据需要选定结构参数,材料性能,更改外部激励,并对预测结果进行可视化处理。运用该软件对舱内噪声进行预测,可以缩短飞机设计周期,减小对已有结构进行噪声控制的困难,提高经济效益。文中通过对某型飞机的舱室内噪声进行预测,验证了统计能量法预测飞机壁板隔声量的可靠性和该软件的实用性。  相似文献   

15.
在直升机飞行过程中,旋翼、尾桨等噪声源在舱室内产生强烈的低频噪声,严重影响直升机的驾乘舒适性,长时间的噪声暴露会危及驾驶安全。直升机舱室常用的夹层壁板结构可有效隔绝中、高频噪声,但其低频隔声性能一般较弱。为有效降低直升机舱室内低频噪声,将局域共振型声学超材料与舱室夹层壁板结合,建立直升机舱室声学超材料壁板模型,采用有限元法分析平面波入射激励下声学超材料壁板的低频隔声性能,并探索局域振子质量、层间结构对隔声性能的影响规律。结果表明:相比敷设阻尼材料、布置动力吸振器等传统舱内降噪方法,声学超材料壁板能有效隔离低频噪声,形成380 Hz~620 Hz的宽低频带隙。增加局域振子质量可有效拓宽带隙宽度并增强带隙内声透射损失,增加纵向加强筋数目可增强结构整体刚度,使振动衰减。声学超材料内饰的引入可为解决直升机舱室低频噪声问题提供技术路线。  相似文献   

16.
在船舶与海洋平台中,空调管路系统噪声是舱室噪声的主要来源之一,风机与管路元件流动噪声通过管路系统与管口传递至舱室,布风器处于管路系统的末端,是连接管路系统与舱室之间的重要元件,在空调系统噪声控制中起重要作用.针对管路系统管口辐射噪声,在兼顾气动性能及声学效果基础上,提出新型低噪声布风器结构形式,采用数值模拟方法开展布风...  相似文献   

17.
《舰艇艉部纵向激励传递特性分析》   总被引:3,自引:1,他引:2  
采用有限元/边界元方法对艉部的声振特性进行研究。首先建立了包含主推进系统在内的有限元模型,分析流固耦合下结构的振动,并利用边界元技术进行结构水下声辐射预报。然后根据传递路径分析方法,对纵向激励下艉部的传递路径进行分析排序。结果显示,纵向激励下,推力轴承基座是艉部振动的主要传递路径。在确定了潜艇艉部的主要振动传递路径后,在主要传递路径上采取隔振措施,以达到减振降噪的目的。研究表明,改变推力轴承的刚度和基座结构形式,对艉部的减振降噪有一定作用。  相似文献   

18.
提出了一种基于可变形空腔的起落架舱体结构,通过机械装置调节舱体底板及后壁倾斜角度,不需要额外增加舱体体积,使用声学有限元法探讨了该结构在低马赫数下的噪声抑制效果。研究发现:随着舱体后壁倾斜角度的增大,舱体内部及外部的噪声明显减小,同时模态频率逐渐增大,有助于避免舱体结构发生共振破坏;舱体后壁倾斜一个较小的角度就能有效地改善内部的声反射环境,进而抑制舱体内部的高频模态噪声、总声压级。当后壁倾斜角度大于某个临界值时,继续增大倾斜角度对于舱体内部高频模态噪声以及总声压级的抑制效果不再明显,在当前的仿真条件下,舱体后壁最佳倾斜角度范围为10°~16°。  相似文献   

19.
针对机舱结构辐射噪声问题,基于有限元/边界元法,对模拟舱室结构进行辐射声场仿真与试验。首先建立模拟舱室结构的有限元模型,对模拟舱室结构进行模态试验,将仿真计算与模态试验进行对比,验证了有限元模型的正确性。然后进行模拟舱室结构的声辐射试验,得到模拟舱室结构内部的声压频响特性。最后在ANSYS中对模拟舱室结构进行瞬态响应计算,将结构受节点力激励的响应导入Virtual Lab中,采用间接边界元法计算空腔结构内部的辐射声场。仿真与试验有较好的一致性,表明该方法是正确、可行的。  相似文献   

20.
为降低高速列车运行时的车厢内低频噪声,研究了车厢内大范围区域的噪声主动控制问题.针对高速列车运行实测噪声频谱与目标降噪区域尺寸(1.8 m×2.5 m×1.3 m),设计48通道的前馈主动控制系统.按照比较匀称的排列方式,次级声源布放在车厢内除底部的其余5个面上,误差点分布在目标区域.通过测量各声学路径传递函数,离线计...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号