首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 199 毫秒
1.
AFM, XRD, zeta (ζ) potential measurement and spectroscopic ellipsometry were used for characterization of thin (20 nm) Au films sputtered onto polyethyleneterephthalate (PET). Sputtered Au film shows significantly different surface morphology and roughness in comparison with pristine PET. From XRD measurement of 20 nm thick sputtered Au layers it was found that Au crystalizes preferentially in (111) direction with lattice parameter of a = 0.40769 nm, density of ρ = 19.338 g cm− 3 and lattice stress of about 230 MPa. Higher surface conductance of Au/PET by ζ-potential measurement was found. Au layer thickness of 19.4 nm determined from spectroscopic ellipsometry was in good agreement with the AFM estimated value of 20 nm.  相似文献   

2.
Microstructural properties of ultrathin (1-10 nm) tetrahedral amorphous carbon (ta-C) films are investigated by Near Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy, X-ray Photoelectron Spectroscopy, Raman spectroscopy and Atomic Force Microscopy (AFM). The CK-edge NEXAFS spectra of 1 nm ta-C films provided evidence of surface defects (C―H bonds) which rapidly diminish with increasing film thickness. A critical thickness for stabilization of largely sp3 matrix structure distorted by sp2 sites is observed via the change of π*C═C peak behavior. Meanwhile, an increase in the film thickness promotes an enhancement in sp3 content, the film roughness remains nearly constant as probed by spectroscopic techniques and AFM, respectively. The effect of thickness on local bonding states of ultrathin ta-C films proves to be the limiting factor for their potential use in magnetic and optical storage devices.  相似文献   

3.
Thin films of cerium oxide (CeO2) have been deposited on (100) Si substrates using pulsed laser deposition technique at various substrate temperatures from room temperature (RT) to 973 K at an optimized oxygen partial pressure of 3 Pa. Structural, morphological and optical properties have been carried out using X-ray diffraction (XRD), Raman, ellipsometry and atomic force microscopy techniques. XRD results showed that the deposited films are polycrystalline with cubic structure. At room temperature, the film showed preferred orientation along (111) plane, while at higher temperatures, it exhibited preferred orientation along (200). The crystallite sizes were calculated and were found to be in the range 17-52 nm. The texture coefficient for (200) reflection increased until 573 K, and then decreased in the temperature range 673-973 K. The Raman peak appeared at 463 cm− 1 due to the F2g active mode also confirmed the formation of CeO2 with a cubic structure. There was a systematic variation in the Raman peak intensity, frequency shift and line broadening with the increase of temperature. The ellipsometry studies showed that the refractive index and band gap increased from 2.2 to 2.6 and 3.4 to 3.6 eV, respectively with increasing substrate temperature from RT to 973 K.  相似文献   

4.

In order to seek potential buffer layer, the influence of different vacuum annealing levels on physical properties to e-beam evaporated Zinc Selenide (ZnSe) thin films are meticulously investigated herein. The X-ray diffraction patterns of vacuum-annealed ZnSe films confirmed the prominent (111) reflection of the cubic phase where the crystallite size is found maximum (29 nm). The wavy optical transmittance spectra are observed for these ZnSe films, where higher transparency is observed in the visible region. A blue shift in the optical band gap (2.56–2.81 eV) and shrink in refractive index from 2.49 to 2.40 is observed with increasing vacuum levels. The HRTEM images demonstrated (111), (220), and (311) orientations of the lattice planes, and EDS patterns confirmed deposition of ZnSe films. The ohmic nature of the analyzed ZnSe thin films is validated by the IV characteristics where the resistivity is found in the order of 102 Ω-cm for vacuum-annealed and 104 Ω-cm for the pristine films. The AFM images indicated hill-like structures where the roughness is found to vary with vacuum level. The physical properties of ZnSe films are conspicuously tailored by vacuum annealing levels, and the findings recommend the use of?~?5?×?10?3 mbar vacuum-annealed ZnSe thin films as potential buffer layer to the solar cells.

  相似文献   

5.
In order to obtain optimally adherent films having the highest mid-infrared photoluminescence efficiency, nanostructured Cr2+:ZnSe films were deposited at room temperature on various substrates by magnetron radiofrequency co-sputtering of a SiO2 target covered by a given number of ZnSe and Cr chips, at different Argon pressures and radiofrequency powers. The deposition parameter effect on the compositional, structural, microstructural and optical properties of the films has been investigated using X-ray reflectivity and diffraction, optical transmission spectroscopy, transmission electron microscopy, and photoluminescence studies. The corresponding films are composed by highly textured cubic and hexagonal ZnSe phases and exhibit strong tensile in-plane residual stresses. The evolution of the tensile residual stress and porosity values are consistent with the optical properties of the layers, and in particular the evolutions of both optical gap and refractive index. The room temperature mid-infrared (2-3 μm) photoluminescence measurements under direct excitation (1850 nm) revealed that chromium has been incorporated in the Cr2+ active state, and the corresponding fluorescence efficiency for an optimized thin film is only two times smaller than the one of a Cr2+:ZnSe reference bulk single crystal.  相似文献   

6.
Multilayer lithium tantalate thin films were deposited on Pt-Si [Si(111)/SiO2/TiO2/Pt(111)] substrates by sol-gel process. The films were annealed at different annealing temperatures (300, 450 and 650 °C) for 15 min. The films are polycrystalline at 650 °C and at other annealing conditions below 650 °C the films are in amorphous state. The films were characterized using X-ray diffraction, atomic force microscopy (AFM) and Raman spectroscopy. The AFM of images show the formation of nanograins of uniform size (50 nm) at 650 °C. These polycrystalline films exhibit spontaneous polarization of 1.5 μC/cm2 at an application of 100 kV/cm. The dielectric constant of multilayer film is very small (6.4 at 10 kHz) as compared to that of single crystal.  相似文献   

7.
Zinc selenide (ZnSe) nanorods have been synthesized by simple and inexpensive wet chemical method using N-Methylaniline as a capping agent. The morphologies and structure of ZnSe nanorods have been characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). The SEM and TEM reveal the formation of nanorods. XRD shows the cubic structure with the lattice constant of 5.633 Å. Strong “blue shift” absorption is observed from UV-visible spectrophotometry. The enhanced luminescence property is measured from photoluminescence spectrophotometry. The presence of N-Methylaniline in the ZnSe nanorods is confirmed by the Fourier transformed infrared spectrum.  相似文献   

8.
In this study, we report the electrosynthesis of zinc selenide (ZnSe) thin films on indium-doped tin oxide-coated glass substrates. The deposited ZnSe thin films have been characterized for structural (X-ray diffraction), surface morphological (scanning electron microscopy), compositional (energy dispersive analysis by X-rays), photo luminescence property, and optical absorption analysis. Formation of cubic structure with preferential orientation along the (111) plane was confirmed from structural analysis. In addition, the influence of the deposition potential on the microstructural properties of ZnSe is plausibly explained. The optical properties of ZnSe thin films are estimated using the transmission spectrum in the range of 400–1200 nm. The optical band gap energy of ZnSe thin films was found to be in the range between 2.52 and 2.61 eV. Photoluminescence spectra were observed at blue shifted band edge peak. The morphological studies depict that the spherical and cuboid shaped grains are distributed evenly over the entire surface of the film. The sizes of the grains are found to be in the range between 150 and 200 nm. The ZnSe thin film stoichiometric composition was observed at optimized deposition condition.  相似文献   

9.
The optical properties of cupric telluride (CuTe) thin films have been studied in the wavelength range 310-800 nm using spectroscopic ellipsometry (SE). Thin films of thickness between 30 and 150 nm were prepared by thermal evaporation at the rate of 15.6 Å/s on well cleaned glass substrates kept at 300 K under the vacuum better than 2×10−5 mbar. It has been found that the optical band gap increases with the thickness of the films. The refractive index of the films increases with the energy but the extinction coefficient first increases and then decreases gradually with energy. The analysis of the absorption coefficient determined from the extinction coefficient reveals that there is allowed direct transition with a band gap of about 1.5 eV. The increase in the band gap with the increase in the film thickness has been ascribed to defect levels in the band gap formed by defects in the films.  相似文献   

10.
The synthesis of monodispersed, starch-capped ZnSe nanoparticles via a facile, “green” and environmentally benign route at room temperature is being reported. The nanoparticles exhibited strong quantum confinement effect with respect to the bulk ZnSe. The transmission electron microscopy (TEM) image indicated that the particles were well dispersed and spherical in shape. The X-ray diffraction (XRD) analysis showed that the ZnSe nanoparticles were of the wurtzite structure, with average particle diameter of about 3.50 nm. The Fourier transform infrared (FT-IR) spectrum confirmed the presence of starch as passivating agent.  相似文献   

11.
R.N. Gayen 《Thin solid films》2010,518(14):3595-3603
Indium phosphide films were deposited by flash evaporating InP powder (99.995%) on glass substrates. Microstructural information was obtained from transmission electron microscope and atomic force microscope (AFM) studies. The average value (~ 0.33 nm) of surface roughness of the films was determined by AFM. X-ray diffraction traces indicated reflections from (111), (220) and (311) planes only. The band gap was found to vary between ~ 1.94 eV and 1.96 eV. ε varied between 11.58 and 11.89 while the plasma frequency (ωp,) were seen to vary between 8.52 and 8.59 × 1014 s− 1. The bonding environment in the films was determined from Raman and Fourier transformed infrared measurements. The experimental absorption spectra could be faithfully described by considering the effect of scattering by the ultra small crystallites in the film alone. Photoluminescence peak located at ~ 1.5 eV may be ascribed due to transitions from states arising out of phosphorous vacancy to the valance band. The shoulders of the peak ~ 1.5 eV may originate from the DA transitions between VP and InP.  相似文献   

12.
This work demonstrates the sensitivity of magneto-optical Kerr-effect (MOKE) spectroscopy to ultra-thin nonmagnetic films using the example of copper oxide. The films with an effective thickness between 0.6 nm and 6 nm are produced by atomic layer deposition (ALD) on silicon oxide substrates based on the Cu(I) β-diketonate precursor [(nBu3P)2Cu(acac)] (acac = acetylacetonate) at a process temperature of 120 °C. The copper oxide films exhibit magneto-optical activity in the spectral ranges around 2.6 eV and above 4 eV. The evolution of the spectral features as a function of the number of ALD cycles is simulated numerically using the dielectric function and the Voigt constant of Cu2O as input parameters. The comparison between experimental and simulated MOKE spectra strengthens the conclusion drawn from spectroscopic ellipsometry studies that the thin film optical constants differ markedly from the bulk ones.  相似文献   

13.
Sang-Jin Cho 《Thin solid films》2010,518(22):6417-6421
This study investigated the effects of plasma power and tetraethylorthosilane (TEOS) to cyclohexene ratios on low-κ organic-inorganic hybrid plasma polymer thin films deposited on silicon (100) substrates. These films were deposited using a plasma enhanced chemical vapor deposition (PECVD) method, in addition to the electrical and mechanical properties of the resulting composites. Cyclohexene and TEOS were used as organic and inorganic precursors, respectively, with hydrogen and argon as precursor bubbler gases. Furthermore, additional argon was used as a carrier gas. The as-grown polymerized thin films were analyzed using ellipsometry, Fourier-transform infrared (FT-IR) spectroscopy, atomic force microscopy (AFM), transmission electron microscopy (TEM), and X-ray diffraction (XRD). The ellipsometry results showed the thickness of the hybrid thin film, and the FT-IR spectra showed that the hybrid polymer thin films were completely fragmented and polymerized between cyclohexene and TEOS. AFM results showed that polymer films with a smooth surface could be grown under various deposition conditions, while TEM and XRD showed that the hybrid thin film was an amorphous plasma polymer thin film without porosity. In addition, current-voltage (C-V) curves were prepared to calculate the dielectric constants. Post-annealing was applied to investigate the thermal stability of hybrid plasma polymer thin films in the hardness, Young's modulus, thermal shrinkage, and the dielectric constant at 400 °C.  相似文献   

14.
Optical characteristics of thin ZnSe films of different thicknesses   总被引:1,自引:0,他引:1  
Polycrystalline ZnSe films of thicknesses 54–785 nm deposited on glass substrates by thermal evaporation were investigated. X-ray diffraction analysis was carried out on as-deposited and annealed films to determine their structure. The ZnSe films were polycrystalline of cubic structure with preferred [111] orientation. Transmission and reflection at normal incidence were performed on ZnSe films in the wavelength range 350–2500 nm to determine the optical constants and optical energy gap. The optical gaps of ZnSe films show remarkable dependence on the film thickness. Analysis of the absorption data revealed the existence of two transition processes (with energy gaps at 2.7 and 2.22 eV for the bulk ZnSe).  相似文献   

15.
The electrical transport properties of graphene-oxide (GO) thin films were investigated. The GO was synthesized by a modified Hummers method and was characterized by X-ray diffraction and UV-visible spectroscopy. The thin film of GO was made on a Si/SiO2 substrate by drop-casting. The surface morphology of the GO film was analyzed by using scanning electron microscopy and atomic force microscopy techniques. Temperature dependent resistance and current-voltage measurements were studied using four-terminal method at various temperatures (120, 150, 175, 200, 250 and 300 K) and their charge transport followed the 3D variable range hopping mechanism which was well supported by Raman spectra analysis. The presence of various functional groups in GO were identified by using high resolution X-ray photo electron (XPS) and Fourier transform infra red (FT-IR) spectroscopic techniques. Graphene-oxide thin film field effect transistor devices show p-type semiconducting behavior with a hole mobility of 0.25 cm2 V−1 s−1 and 0.59 cm2 V−1 s−1 when measured in air and vacuum respectively.  相似文献   

16.
Zinc cadmium oxide (ZnCdO) transparent thin film transistors (TFTs) have been fabricated with a back-gate structure using highly p-type Si (001) substrate. For the active channel, 30 nm, 50 nm, and 100 nm thick ZnCdO thin films were grown by pulsed laser deposition. The ZnCdO thin films were wurtzite hexagonal structure with preferred growth along the (002) direction. All the samples were found to be highly transparent with an average transmission of about 80%~ in the visible range. We have investigated the change of the performance of ZnCdO TFTs as the thickness of the active layer is increased. The carrier concentration of ZnCdO thin films has been confirmed to be increased from 1016 to 1019 cm−3 as the film thickness increased from 30 to 100 nm. Base on this result, the ZnCdO TFTs show a thickness-dependent performance which is ascribed to the carrier concentration in the active layer. The ZnCdO TFT with 30 nm active layer showed good off-current characteristic of below ~ 1011, threshold voltage of 4.69 V, a subthreshold swing of 4.2 V/decade, mobility of 0.17 cm2/V s, and on-to-off current ratios of 3.37 × 104.  相似文献   

17.
Polyaniline (PANI)-ZnO nanoparticles composites film has been successfully fabricated by solution casting technique on glass substrate in which ZnO nanopowder was prepared via auto combustion method and used as inorganic materials. The as-grown nanocomposites film has been characterized using X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, Transmission electron microscopy (TEM) and Atomic Force Microscopy (AFM) for their structural and morphological characterizations. X-ray diffraction studies of as-grown film showed the reflection of ZnO nanoparticles along with a broad peak of PANI. The AFM study of the film shows the incorporation of ZnO nanoparticles into the polymer matrix which was further supported by roughness measurement. TEM images showed that the size of ZnO nanoparticles in the nanocomposites increase from ~ 35 nm to ~ 45 nm, indicating the interaction of nanoparticles with PANI molecular chains. FTIR spectra showed a band at 501 cm−1 due to ZnO nanoparticles while the hydrogen bonding between the amine group of PANI and ZnO nanoparticles had been confirmed from the presence of the absorption band at 1148 cm−1.  相似文献   

18.
The optical and electrical properties of variously textured diamond films have been investigated in this paper. SEM and Raman spectrum indicated that the films produced were of high quality with either (0 0 1) or (1 1 1) orientation. A four-layer model was used to fit the measured spectroscopic ellipsometry data. The results indicated that the properties of (0 0 1)-oriented diamond films were superior to those of (1 1 1)-oriented one. The refractive index and extinction coefficient of (0 0 1)-oriented diamond film in the infrared region of 2500-12500 nm was measured as 2.391 and of the order of 10−5, respectively and that for (1 1 1)-oriented one was 2.375 and of the order of 10−4, respectively. The dark current of the (0 0 1)-oriented diamond film was measured as 33.7 nA for an applied electric field of 100 kV cm−1, its resistivity being about 2.33×1010 Ω cm. Current passing through the (0 0 1)-oriented diamond film during testing did not change significantly.  相似文献   

19.
Nickel manganite thin films of interest for microbolometer applications have been prepared using chemical solution and spin spray deposition and studied using transmission electron microscopy to quantify the material crystallinity and spectroscopic ellipsometry to extract the complex dielectric function (ε = ε1 + iε2) and film microstructure. A parameterization for ε over a spectral range from 0.04 to 5.15 eV has been developed to model well-crystallized nickel manganite, and the visible-range critical point features, infrared vibrations, and optical absorption onset have been identified. A multiple sample analysis structural model and procedure has been developed for spin spray deposited films exhibiting complicated void evolutions with thickness. Variations in ε and crystallite grain size have been observed as a function of film processing and indicate that the optical properties and microstructural information gained from spectroscopic ellipsometry is useful in process monitoring for this material system.  相似文献   

20.
TiN and Ti1−xAlxN thin films with different aluminum concentrations (x = 0.35, 0.40, 0.55, 0.64 and 0.81) were synthesized by reactive magnetron co-sputtering technique. The structure, surface morphology and optical properties were examined using Grazing Incidence X-ray Diffraction (GIXRD), Atomic Force Microscopy (AFM), Raman spectroscopy and spectroscopic ellipsometry, respectively. The structure of the films were found to be of rocksalt type (NaCl) for x = 0.0–0.64 and X-ray amorphous for x = 0.81. AFM topographies show continuous mound like structure for the films of x between 0.0 and 0.64, whereas the film with x = 0.81 showed smooth surface with fine grains. Micro-Raman spectroscopic studies indicate structural phase separation of AlN from TiAlN matrix for x > 0.40. Ti1−xAlxN has the tendency for decomposition with the increase of Al concentration whereas c-TiN and hcp-AlN are stable mostly. The optical studies carried out by spectroscopic ellipsometry measurements showed a change from metallic to insulating behavior with the increase in x. These films are found to be an insulator beyond x = 0.81.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号