首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
为了提高TiO_2光阳极的电子传输速率,在TiO_2中负载了多壁碳纳米管(MWCNTs)。采用溶胶–凝胶水热法制备了TiO_2/MWCNTs复合溶胶,利用电流体动力学方法制备了均匀的TiO_2/MWCNTs复合薄膜,并用TiCl_4对薄膜进行了优化。用扫描电子显微镜、透射电子显微镜、X射线衍射仪和紫外可见吸收光谱仪对样品进行了表征分析。利用电化学阻抗谱和电流密度–电压曲线分析了基于TiO_2/MWCNTs复合光阳极和SnO_2/MWCNTs对电极的染料敏化太阳能电池(DSSC)的光电性能。结果表明,MWCNTs的加入极大地加速了电子在薄膜中的传输,减少了电子与氧化态染料和I_3~–的复合;基于CNT-0.12(质量分数0.12%)复合光阳极的DSSC性能最佳(V_(OC)=0.70 V,J_(SC)=13.0 m A/cm~2,η_(FF)=0.64,η=5.80%),与基于纯TiO_2光阳极的DSSC(η=4.44%)相比,能量转换效率提高了30.6%。  相似文献   

2.
纳米TiO2具有合适的禁带宽度(3.2 eV)、良好的光电化学稳定性、价格低廉、易牢固吸附染料等优点,目前仍是应用于染料敏化太阳能电池(DSSC)主要的半导体材料。TiO2光阳极是DSSC的重要组成部分之一,其晶体的形貌与DSSC的光电性能密切相关。本文综述了应用于DSSC中不同形貌TiO2光阳极,重点探讨了常规TiO2光阳极形貌,如纳米粒子、纳米棒、纳米线、纳米管;对新型TiO2光阳极及复合光阳极的形貌也作了介绍。讨论了不同形貌TiO2光阳极的制备方法及其结构对DSSC光电性能的影响,提出TiO2光阳极今后的研究方向是将不同形貌光阳极进行复合或混合掺杂来提高电子传输速率、优化TiO2薄膜厚度、控制TiO2薄膜中晶体结构抑制电荷再结合、提高电荷传输效率。  相似文献   

3.
张泽铭 《广东化工》2014,(14):10-11
文章采用二步阳极氧化法在纯钛片上制备了TiO2纳米管阵列,并用GO溶液修饰与其形成GO/TiO2纳米复合薄膜,修饰后的复合薄膜光电化学性能增强,组装成DSSC提高其光电转换效率,短路电流密度为13.2 mA·cm-2,光电转换效率为6.22%,相对于基于TiO2纳米管的DSSC电池分别提高了53%和30%。  相似文献   

4.
采用溶剂热法制备出花状Sn O2晶体,然后在FTO导电玻璃上制得Sn O2薄膜。将Sn O2薄膜在不同浓度Ti Cl4溶液中浸渍1 h,并经450℃煅烧30 min得到Sn O2-Ti O2复合薄膜光阳极。经N3染料浸渍后,与Pt对电极,I–/I3–电解质组装成染料敏化太阳能电池(DSSC),测试了DSSC的性能。结果表明:Ti Cl4浸泡有利于提高Sn O2-DSSC的光电性能,当Ti Cl4浓度为0.15 mol/L时,Sn O2-Ti O2-DSSC的短路电流(Jsc)和开路电压(Voc)分别达到11.30 m A/cm2和0.55 V,电池的光电转换效率达到3.24%,与纯花状Sn O2-DSSC相比提高了近4倍。分析了不同浓度的Ti Cl4对光阳极的电子输运和光电转换效率的影响机制。  相似文献   

5.
为了提高TiO2光阳极的电子传输速率,在TiO2中负载了多壁碳纳米管(MWCNTs)。采用溶胶–凝胶水热法制备了TiO2/MWCNTs复合溶胶,利用电流体动力学方法制备了均匀的TiO2/MWCNTs复合薄膜,并用TiCl4对薄膜进行了优化。用扫描电子显微镜、透射电子显微镜、X射线衍射仪和紫外可见吸收光谱仪对样品进行了表征分析。利用电化学阻抗谱和电流密度–电压曲线分析了基于TiO2/MWCNTs复合光阳极和SnO2/MWCNTs对电极的染料敏化太阳能电池(DSSC)的光电性能。结果表明,MWCNTs的加入极大地加速了电子在薄膜中的传输,减少了电子与氧化态染料和I3–的复合;基于CNT-0.12(质量分数0.12%)复合光阳极的DSSC性能最佳(VOC=0.70 V,JSC=13.0 m A/cm2,ηFF=0.64,η=5.80%),与基于纯TiO2光阳极的DSSC(η=4.44%)相比,能量转换效率提高了30.6%。  相似文献   

6.
通过硝酸锌与2-甲基咪唑反应制备沸石咪唑酯骨架结构材料(ZIF-8),利用钛酸正四丁酯在ZIF-8表面水解得到ZIF/TiO2复合材料。在空气气氛中于不同温度条件下对ZIF/TiO2复合材料进行热处理得到不同的ZnO/TiO2复合材料,并应用于DSSC的光阳极,测试电池的光电流-光电压特征曲线,对测试结果进行分析。结果表明:不同ZnO/TiO2复合材料为光阳极材料制备的DSSC,光电转换效率与直接热处理制备的ZnO单相材料相比有了显著提高,其中热处理温度为600℃时,材料具备最高的光电转换效率,为3.69%,比直接热处理制备的ZnO单相材料0.78%的光电转换效率提高了373%,说明加入TiO2制备复合材料可以大幅度提高ZnO基DSSC的光电性能。  相似文献   

7.
以葡萄皮乙醇提取液作为敏化剂用于染料敏化太阳能电池,光电转换效率达到0.81%。不同pH值下,葡萄皮色素敏化的光阳极的单色光光电转换效率相差较大。在酸性介质中的吸光谱能较好的满足太阳能电池对吸光的需求。采用稀盐酸处理阳极膜的方法,使染料与膜结合性能提高。光子捕获能力增强,电池的TiO2/染料/电解质界面间电子传输阻抗减小,DSSC的光电装换效率达到1.43%,电流密度和光电转换效率分别提高了48.5%和76.5%。  相似文献   

8.
SnO_2的储钠理论容量高,是很有前景的储钠材料,石墨烯导电性和力学性能良好,是理想的电极材料辅助材料。然而与石墨烯复合后获得的SnO_2/还原氧化石墨烯(RGO)复合材料比表面积大,首次Coulomb效率低,影响了材料的规模应用。采用水热法,原位合成了SnO_2/RGO复合材料,并成功填充沥青炭制备了C/SnO_2/RGO复合材料。结果表明:C/SnO_2/RGO复合材料中SnO_2均匀分布在RGO结构中,晶粒尺寸约6 nm;沥青炭填充后的C/SnO_2/RGO首次Coulomb效率显著提高,比SnO_2/RGO提高近25%;100次循环以后SnO_2/RGO和C/SnO_2/RGO复合材料容量保持分别为442.1和479.8 m A·h/g;沥青炭的加入使得循环稳定性显著增加,材料的阻抗得到了大幅度改善,增加了SnO_2粒子、RGO以及沥青炭之间的电子以及离子传导性。  相似文献   

9.
钟诚 《化工设计通讯》2023,(7):163-165+176
采用两种晶相TiO2光阳极、蓝莓花青素染料、I-/I3-电解质溶液、复合碳层对电极制备了染料敏化太阳能电池。通过XRD、SEM分析了TiO2纳米颗粒的微结构与形貌,以模拟太阳光和电化学工作站检测了电池的光电性能,结果发现,太阳能电池性能差异较大,金红石相光阳极电池的光电转换率为锐钛矿相光阳极电池的三倍多,结合TiO2纳米颗粒形貌及电池的EIS分析了原因。  相似文献   

10.
采用水热方法制备了纳米金属氧化物SnO_2/石墨烯(RGO)复合材料,同时用相同工艺制备了纯SnO_2与纯RGO作为对比。SnO_2/RGO复合材料中SnO_2均匀分布在RGO结构中,晶粒尺寸约为5 nm,与合成的单相SnO_2相比晶粒尺寸显著减小。电化学性能测试表明,RGO、SnO_2和SnO2/RGO的首次可逆容量分别为339.3、862.7和1 054.2 m A·h/g,50次循环后容量分别为198.5、306.2和977.8 m A·h/g。SnO_2/RGO复合材料的可逆容量和循环稳定性比纯RGO和SnO_2有显著增加。电化学性能的提高归因于RGO的加入显著减小SnO2尺寸,提高了材料导电性,同时有效阻止了SnO_2团聚。  相似文献   

11.
采用脉冲电沉积法将In_2S_3纳米粒子沉积在TiO_2纳米管阵列(NTs)上,得到In_2S_3–TiO_2 NTs。然后通过脉冲电沉积法将石墨烯薄膜修饰在In_2S_3–TiO_2 NTs上,制备出RGO/In_2S_3–TiO_2 NTs复合材料。通过光电流测试和2,4-二氯苯氧乙酸(2,4-D)降解试验表征了RGO/In_2S_3–TiO_2 NTs的光电性能和光催化性能。结果表明:相对于纯TiO_2 NTs,RGO/In_2S_3–TiO_2 NTs复合材料的光生电子-空穴对的复合率更低,对可见光的吸收更强。光催化180 min后,RGO/In_2S_3–TiO_2 NTs复合材料对2,4-D的降解效率高达93.36%,重复使用5次后仍有90.70%。  相似文献   

12.
以水热法加入不同浓度的HCl溶液制备二氧化钛胶体。采用刮涂法制备柔性染料敏化太阳能电池(DSSC)光阳极,对其进行各种性能研究,以此来分析不同制备条件对DSSCs的影响。结果表明,盐酸能够促进TiO_2颗粒的分散,TiO_2颗粒与柔性ITO/PEN导电衬底的连接以及TiO_2薄膜的染料吸附量。经优化,测得含有0.05 M(mol/L)HCl的柔性DSSC的光电转换效率为2.84%。  相似文献   

13.
用水热法制备的Ti02纳米棒与纳米颗粒P25混合制备复合晶膜电极,通过扫描电镜、透射电镜、紫外-可见吸收光谱和电池的光电性能测试,分析掺入纳米棒对染料敏化太阳能电池(dye-sensitized solar cells,DSSC)性能的影响.结果表明:加入一定量的TiO2纳米棒可以改善复合薄膜对染料的吸附量和薄膜电极对...  相似文献   

14.
染料敏化太阳电池TiO2光阳极研究进展   总被引:2,自引:0,他引:2  
纳米TiO2是目前性能最为优良的染料敏化太阳电池(DSSC)光阳极材料。文章系统综述了优化纳米TiO2光阳极的染料吸附、电子传输、再生染料等性能的技术和方法,主要包括纳米TiO2光阳极薄膜微结构的调控、TiO2光阳极的离子/元素掺杂、TiO2光阳极的表面包覆、TiO2光阳极的表面处理等方面的国内外研究进展,并分析了目前TiO2光阳极存在的主要问题及未来的发展方向。  相似文献   

15.
本文利用水性过氧化钛配合物(peoxotitanium complex:PTC)前驱体可低温合成锐钛矿TiO2溶胶的特性,将其用作柔性染料敏化太阳能电池(DSSC)中的光阳极材料的成膜助剂.研究发现:加入基于PTC制得的TiO2溶胶可以明显提高DSSC的光电转换性能,在制备DSSC的浆料中加入10%(体积分数)的基于PTC制得的TiO2溶胶后,电池的光电效率可以提升50%.我们进一步研究了光电转换效率的影响因素,结果表明,溶胶的加入量和反应时间均有一最佳值,当基于PTC的TiO2溶胶添加量为10%,反应时间为9h,所得到电池的光电性能最好.  相似文献   

16.
本文采用二氧化钛(P25),粘结剂及溶剂,研磨数小时得到均匀分散的纳米二氧化钛浆料,通过涂布法在FTO导电玻璃衬底上制备了光阳极,并用其组装成染料敏化太阳能电池。经过优化二氧化钛和粘结剂的比例,得到平整、致密、均匀的二氧化钛薄膜。对二氧化钛薄膜进行FTIR、SEM和光学显微镜表征,并对组装电池进行光电性能测试,研究了二氧化钛浆料不同制备条件对太阳能电池性能的影响。结果表明,二氧化钛粉末和粘结剂质量比为4∶3时,制备的二氧化钛浆料稳定性高;涂布厚度为20μm时,电池性能较好。组装的染料敏化太阳能电池在100mW/cm2模拟太阳光照下,光电转换效率达到2.51%。  相似文献   

17.
为提高TiO2光阳极染料吸附量和染料敏化太阳电池(DSSC)的光电转换效率。在制备TiO2浆料过程中,加入不同量的聚乙烯吡咯烷酮(PVP)、十六烷基三甲基氯化铵(CTAC)、乙酰丙酮、聚乙二醇(PEG 20000),经机械搅拌得到TiO2浆料,采用旋涂法在基底上制备多孔TiO2薄膜阳极,组装成染料敏化太阳电池。采用紫外-可见分光光度计、太阳光模拟器及2400型数字源表测试其紫外可见光吸收光谱以及光电转换效率。利用正交实验探讨了浆料中聚乙烯吡咯烷酮(PVP)、十六烷基三甲基氯化铵(CTAC)、乙酰丙酮和聚乙二醇(PEG20000)对浆料吸光度及DSSC光电性能的影响。研究结果表明,DSSC光电转化效率最佳的配方为:CTAC:0.6 g,乙酰丙酮:1.2 mL,PVP:0.6 g,PEG 20000:1 g,效率(η)达到4.20%。染料吸附量最佳的配方为:CTAC:0.4 g,乙酰丙酮:1.2 mL,PVP:0.6 g,PEG 20000:1.5 g,吸光度为0.386。由此制得的TiO2<...  相似文献   

18.
结合FeS_2/还原氧化石墨烯(RGO)纳米复合材料的制备方法,对热电池放电性能进行分析,核心目的是在方法完善的同时,提高热电池放电的稳定性,促进产业的稳定发展,为现代FeS_2/RGO纳米复合材料的使用提供支持。  相似文献   

19.
采用直流反应磁控溅射工艺,在ZnO纳米阵列的表面实现TiO2包覆,作为染料敏化太阳能电池光阳极,研究TiO2--ZnO核壳结构的形成机理和制备工艺对其光电性能的影响。利用X射线衍射仪、扫描电子显微镜、能谱分析仪表征光阳极材料的成分与结构。测试电池组件的伏安特性曲线、电压-时间曲线和电化学阻抗谱,分析TiO2包覆对电子传输性能和光电转换效率的影响机理。结果表明:磁控溅射制备的TiO2颗粒完整地包覆ZnO纳米阵列,使得纳米棒表面形貌由六棱柱向圆柱状转变,间隙变窄,直径较ZnO纳米阵列有所增加,阵列有序度得到改善。随着延长染料吸附时间和TiO2包覆,光阳极界面电子传输阻抗显著增加,光生电子的寿命也得到提高。经过包覆的光阳极能够作为阻挡层钝化表面缺陷,抑制复合的发生,从而提高开路电压和填充因子。经过包覆的光阳极其光电转换效率相对于纯ZnO纳米阵列提高了132%。  相似文献   

20.
作为染料敏化太阳能电池的一个重要组成部分,对电极的研究对染料敏化太阳能电池(DSSC)的发展有着重要的意义。石墨烯基材料因其良好的电化学催化活性,高的电导率、腐蚀阻抗,大比表面积、重量轻以及低制备成本而受到了研究人员的关注。本文选用还原氧化石墨烯与聚苯胺复合作为对电极进行研究,通过石墨烯的高电导率以及聚苯胺较好的催化活性能够制备出了性能更优越的复合对电极。并对其进行了XRD、SEM表征以及电化学性能测试,探究了其作为染料敏化太阳能电池对电极的光电转换效率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号