首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
采用水热碱法制得纯相六方钾霞石(KAlSiO_4),在H_2SO_4-H_2O溶液中破坏其晶体结构,K_2O溶出率达99.8%,固相产物Si/Al摩尔比≈1,用作合成高岭石(Al_2[Si_2O_5](OH)_4)的前驱体。采用OLIAnalyzer 9.2软件对Al_2O_3·2SiO_2·nH_2O-HCl-H_2O体系进行化学平衡计算,预测了水热法合成高岭石的初始HCl浓度、水/固质量比和晶化温度范围,以及平衡固相中高岭石的含量(>98%)。在此基础上通过单因素实验,确定了水热合成高岭石的优化条件和晶化历程。典型合成产物接近纯相纳米高岭石(~91.8%),结构高度有序,1Tc多型;晶体形态呈似六方片状,片径400~500 nm,厚度约20 nm。高岭石的晶化反应历程确定为:铝硅前驱体→板状勃姆石→板状勃姆石+片状高岭石→似六方片状高岭石。  相似文献   

2.
γ-Al2O3由于具有巨大的比表面积,因此特别适合用作催化剂载体。纳米晶勃姆石是制备γ-Al2O3的原料。以氢氧化钠、六水氯化铝为原料,通过水热法控制合成温度在105~160℃,合成出勃姆石(Boehmite)纳米晶。对产品进行了XRD、HRTEM及EDS能谱表征分析后,确认了产品为勃姆石结构,且纳米晶尺寸在20nm左右。通过对合成工艺参数进行分析,提出了水热法制备纳米晶控制关键要素以及可能的合成理论。  相似文献   

3.
溶胶-凝胶法制备Al2O3纳米粉   总被引:16,自引:0,他引:16  
以Al(NO3) 3和NH3·H2 O为原料制备AlOOH勃姆石溶胶 ,加入PVA作为分散剂 ,干燥后制成干凝胶。干凝胶经不同温度下煅烧得到不同晶型的Al2 O3纳米粉。X—射线衍射分析结果表明 ,勃姆石干凝胶在煅烧过程中的物相变化为AlOOH→ε-Al2 O3→ -Al2 O3→δ -Al2 O3→θ -Al2 O3→α-Al2 O3,采用电子显微镜和BET比表面积法测量出Al2 O3纳米粉的颗粒大小  相似文献   

4.
勃姆石的合成、表征及其生长过程研究   总被引:1,自引:0,他引:1  
采用水热法合成了准六角形片状勃姆石,用TEM、XRD等技术对其生长过程进行了研究。结果表明,勃姆石的生长过程包含4个阶段:形核及晶核的生长、晶粒的快速生长、缓慢生长和再生长。形核及晶核的生长阶段,晶粒各晶面的生长行为基本一致。其他生长阶段,各晶面的生长行为呈现显著差别。经电子束辐照后,勃姆石可以转变为γ-Al2O3。  相似文献   

5.
NaY晶体的n(Na_2O)∶n(Al_2O_3)=1.0,但现有NaY合成工艺的起始凝胶的n(Na_2O)/n(Al_2O_3)均较高,导致大量原料中的Na_2O及相应量其他组分没有转化为产品,而是进入晶化母液被滤除,因此NaY生产企业期望采用更低n(Na_2O)∶n(Al_2O_3)的凝胶来提高NaY合成收率。对起始凝胶Na_2O与Al_2O_3物质的量比为3.84~4.64的水热合成NaY分子筛做了研究。结果表明,在100℃以下晶化时,n(Na_2O)∶n(Al_2O_3)=3.84的低碱度凝胶不能晶化出NaY分子筛;在100℃以上晶化时,n(Na_2O)∶n(Al_2O_3)=3.84的低碱度凝胶能够晶化出结晶度、硅铝比(Si O2与Al_2O_3物质的量比,下同)均较高且无杂晶的NaY。其最佳的晶化条件:晶化温度为110℃、晶化时间为30 h。并可重复制备出平均结晶度为95%、平均骨架硅铝比为5.93、典型粒径约为1μm的小晶粒NaY分子筛,原料平均转化率达68.2%。  相似文献   

6.
苗鸿雁  张琼  谈国强 《精细化工》2007,24(1):10-12,16
以FeC l3.6H2O和B i(NO3)3.5H2O为原料,氨水为沉淀剂,KOH为矿化剂,采用共沉淀法制备前驱物,水热法合成了纯相的B iFeO3粉体。X射线衍射结果表明,在160℃,碱浓度仅为0.15 mol/L的水热条件下,即可合成纯相的B iFeO3粉体。该工艺大大降低了水热温度,减小了碱浓度,从而节约了能源,降低了成本,减轻了碱对水热设备的腐蚀。扫描电镜显示,前驱沉淀物陈化时间为1 d时,水热制备的B iFeO3粉体中有发育良好的六方短柱状晶体形成;陈化时间增加到3 d时,所得B iFeO3粉体呈双层板状。差热-失重分析表明,所得B iFeO3粉体的尼尔温度(TN)为301℃,居里温度(TC)为828℃,分解温度为964℃。  相似文献   

7.
专利摘要     
含铬氧化铝氢化催化剂本专利有关含铬氧化铝氢化催化剂的制备,该催化剂用于乙醛和脂肪酸或其甲酯的氢化,它由亚铬酸铜和氧化铝组成,是将CuCr_2O_4·CuO40~80%和Al_2O_318~60%混合经挤压而成,Al_2O_3为可挤压的Al_2O_3为宜,如假勃姆石、α-羟基勃姆石。制得催化剂具有比表面积为20~225米~2/克,松密度0.70~1.20。  相似文献   

8.
利用钾长石–KOH–H_2O体系分解反应所得硅酸钾碱液合成针状硬硅钙石,用作合成硅灰石的前驱体。采用OLI Analyzer 9.2软件模拟K2O–CaO–SiO_2–H_2O体系化学平衡,预测了合成硬硅钙石的初始CaO/SiO_2摩尔比、反应温度和液固比范围。在此基础上通过单因素实验,确定了合成硬硅钙石的优化条件。反应历程为:水合硅酸钙→雪硅钙石→雪硅钙石+硬硅钙石→硬硅钙石。合成的硅灰石保持了硬硅钙石的针状形貌,分散较均匀,长约10~15μm,直径约300 nm,长径比约40,符合建材行业一级品标准。  相似文献   

9.
考察了n(Na_2O)∶n(SiO_2)、n(H_2O)∶n(SiO_2)、n(SiO_2)∶n(Al_2O_3)及晶化时间对NU-87分子筛合成的影响,优化了合成条件,以EU-1分子筛为异质晶种,合成出NU-87分子筛,缩短了晶化时间。利用XRD、FT-IR、SEM及N_2等温吸附-脱附等方法对NU-87分子筛进行表征。结果表明,高n(H_2O)∶n(SiO_2)和低n(Na_2O)∶n(SiO_2)有助于NU-87分子筛的生成,优选的n(Na_2O)∶n(SiO_2)=0.14~0.15、n(H_2O)∶n(SiO_2)=48~55、n(SiO_2)∶n(Al_2O_3)=50、55和60时均合成出NU-87分子筛。晶化时间对NU-87分子筛的合成影响较大,最优晶化时间为8天。采用非晶种法合成NU-87分子筛时,随投料n(SiO_2)∶n(Al_2O_3)增大,合成NU-87分子筛的n(SiO_2)∶n(Al_2O_3)增大,比表面积逐渐减小,孔容与平均孔径大小基本未发生变化,B酸、L酸及总酸量逐渐减少。采用异质晶种法合成NU-87分子筛时,所得分子筛的n(SiO_2)∶n(Al_2O_3)最小,但其比表面积、孔容、平均孔径及B酸、L酸和总酸量均显著增大。NU-87分子筛为矩形条板状。  相似文献   

10.
以水热合成的一维γ-AlOOH为原料,采用固相反应法制备了具有高Na-β"-Al_2O_3相相含量的电解质材料,研究了前驱体形貌及烧结制度对Na-β"-Al_2O_3材料的影响。结果表明:γ-AlOOH经预烧后的产物形貌为一维棒状形貌,良好的拓扑继承γ-AlOOH前驱体的一维形貌,经高温固相反应形成Na-β"-Al_2O_3相后无法进一步继承前驱体的一维结构,得到具有层片状结构的Na-β"-Al_2O_3材料。预烧可以提高β"-Al_2O_3相含量,当预烧温度为1 100℃时,β"-Al_2O_3相含量达95.7%,300℃时的电导率为0.017 S?cm~(–1)。  相似文献   

11.
采用分析纯Bi(NO3)3·5H2O和TiO2为原料,以NaOH 为矿化剂,用水热法合成了钛酸铋纳米粉体.讨论了水热反应温度和晶化时间对钛酸铋粉体结构和形貌的影响.研究结果表明,随着水热温度的提高及晶化时间的延长,晶体结晶程度提高;在140~180 ℃和30~72 h的水热条件下,合成了纯的Bi4Ti3O12粉体,其主要由方形片状的纳米晶组成,为典型的钙钛矿结构.并结合实验结果探讨了钛酸铋的水热合成机理.  相似文献   

12.
以TiCl4和ZnCl2为主要原料,采用水热条件合成TiO2-ZnO复合氧化物,然后用传统固相法合成偏钛酸锌(ZnTiO3)陶瓷粉体,并用XRD和SEM对其组织结构和形貌进行了表征。结果表明,水热合成粉体粒度小活性大,在650℃煅烧就能合成ZnTiO3相,通过800℃煅烧可以转变为纯六方ZnTiO3钛铁矿相,避免了Zn2Ti3O8相的生成。  相似文献   

13.
以异丙醇铝为原料,用水热工艺合成了勃姆铝石溶胶,并通过原位生成法将勃姆铝石溶胶与聚酰亚胺复合,制备了勃姆铝石/聚酰亚胺纳米复合薄膜.利用X射线衍射、扫描电镜、热重分析及耐电晕性能测试分别对勃姆铝石溶胶和勃姆铝石/聚酰哑胺纳米复合薄膜进行了表征.结果表明:勃姆铝石晶体的粒度为20~30nm,勃姆铝石在聚酰亚胺基体中以纳米尺度分散,无团聚现象.纳米勃姆铝石的加入提高了复合薄膜的热稳定性及耐电晕时间.当勃姆铝石含量为9%时,复合薄膜的耐电晕时间是纯聚酰亚胺薄膜的13倍.  相似文献   

14.
掺加纳米颗粒会影响到材料的力学性能,本文采用水热法在碱性环境下合成了片状纳米勃姆石,并将其加入到水泥中,研究了片状纳米勃姆石对水泥浆体力学性能的影响规律,并结合水化热、X射线衍射分析、热分析、氮吸附分析、扫描电子显微镜分析等测试手段对片状纳米勃姆石在水泥中的作用机理进行研究。结果表明:片状纳米勃姆石的加入可以明显提高水泥浆体的早期力学性能,与空白组相比,当勃姆石掺量为0.5%(质量分数)时,水泥浆体的抗压强度最大可以提高42.8%;勃姆石的加入不仅可以提高水泥水化反应速率,促进水泥的早期水化,还可以减少有害毛细孔含量,优化孔结构,提高水泥浆体的致密程度,从而促进水泥早期强度的发展。该研究结果为改善水泥的力学性能提供了新的方法。  相似文献   

15.
拜尔法三水铝石受热相变的形貌特征   总被引:1,自引:0,他引:1  
研究了拜尔-三水铝石煅烧成α-Al2O3的相变过程和显微结构演变.用扫描电镜和x射线衍射(X-ray diffraction,XRD)研究了三水铝石及其热处理过程中的相组成和结晶形貌.拜尔一三水铝石原料为<200ttm的球形多晶粒团聚体颗粒,由六方柱状三水铝石和少量勃姆石组成.经200~1200 ℃处理,热处理中每间隔100℃保温3h,热处理后球形团聚体颗粒轮廓只有少许变化,晶粒保持了原三水铝石形貌.XRD分析表明:经200℃处理3h后,三水铝石大部分分解为勃姆石;至400℃,三水铝石全部分解,勃姆石绝大部分分解,开始生成γ-Al2O3;900℃时,开始生成θ-Al2O3和κ-Al2O3相,为γ-Al2O3,θ-Al2O3和κ-Al2O3三相共存;热处理至1 000℃,开始出现洳A1203,形成四相共存结构;至1 200℃,所有过渡相均已转变为α-Al2O3.  相似文献   

16.
以白云石和工业Al(OH)3为原料,采用水热合成和低温煅烧二步法工艺制备六铝酸钙-镁铝尖晶复相陶瓷,探索了水热处理温度对前驱体性能及六铝酸钙/镁铝尖晶石复相陶瓷物相组成和形貌的影响。结果表明:200℃水热处理后的前驱体中,板状三水铝石转变为多孔薄片状薄水铝石;前驱体高温分解后可为复相陶瓷的生成提供高活性原料和六铝酸钙片状形貌的生长空间;二步法工艺可使烧成温度降低100℃以上。白云石添加量为13%时,配料经200℃水热、1 400℃煅烧3 h即可制备出主晶相为六铝酸钙和镁铝尖晶的复相陶瓷,六铝酸钙形貌发育完整,呈交叉片状存在。复相陶瓷的体积密度为1.56 g/cm3,气孔率为61.5%,孔径分布在0.2~1.1μm之间。未水热处理配料于1 500℃保温3 h,制备出六铝酸钙/镁铝尖晶石复相陶瓷,六铝酸钙和镁铝尖晶石晶体衍射峰强度较弱,六铝酸钙片状形貌发育不完整。  相似文献   

17.
晶化导向剂对4A沸石的合成及性能影响的研究   总被引:3,自引:2,他引:3  
本文以水玻璃与偏铝酸钠为原料‘在水热合成体系(3Na_2O——Al_2O_3——2SiO_2——185H_2O)中,添加晶化导向剂对洗涤剂助剂4A沸石的合成及产品性能的影响进行了初步的探论。结果表明,晶化导向剂对4A沸石的合成具有明显的诱导效应,不仅大大加快晶化速度,同时,沸石的粒度微细均一,其Ca~(++)交换速度也有明显的提高。  相似文献   

18.
分别使用(NH4)2CO3、NH4HCO3和饱和NH4HCO3与Al(NO3)3·9H2O进行共沉淀,制得碳酸铝氨、勃姆石以及碳酸铝氨与勃姆石的混合物,焙烧后得到具有不同性质和孔径分布的氧化铝。通过XRD、FTIR、TGA等表征技术,研究了不同沉淀剂对氧化铝前驱体物相组成和结构的影响。通过XRD、BET等技术研究了焙烧后氧化铝的性质和结构,并研究了前驱体和焙烧后氧化铝之间的关联关系。最后,研究了不同氧化铝负载钴制备催化剂的费托合成催化性能。  相似文献   

19.
我国铝矾土矿属于高铝、高硅、低铁类矿,是酸浸法制备硫酸铝的良好原料。属于高铝、高硅的铝矾土矿主要有以下一些种类:蓝晶石Al_2O_3SiO_2、红栓石Al_2O_3SiO_2、硅线石Al_2O_3SiO_2、霞石(Na、K)_2OAl_2O_32SiO_2、长石(Na、K)_2OAl_2O_3·6SiO_2、白云母K_2O·Al_2O_3·6SiO_2·2H_2O、绢云母K_2O·3Al_2O_3·6SiO_2·2H_2O、白榴石K_2O·Al_2O_3·4SiO_2、高岭石Al_2O_3·SiO_2·2H_2O等。一水软铝石Al_2O_3H_2O、一水硬铝石Al_2O_3H_2O、三水铝石Al_2O_3·3H_2O等是属于高铝低硅的  相似文献   

20.
以工业Al(OH)3为原料,通过引入晶种和矿化剂,用水热法低温合成α-Al2O3粉体.研究了固相含量、原料粒度、水热温度、保温时间、晶种加入量、矿化剂种类等因素对α-Al2O3产率和产物晶粒形貌的影响.结果表明:随固相含量的增加,产物的收率增加,当固相含量增大到8%(质量分数,下同)时,产物的收率开始降低;原料粒度从16 μm减小到2.5μm时,产物的收率增大,当原料粒度减小到1.5μm,产物的收率变化不明显;随着水热温度的升高、水热时间的延长,α-Al2O3含量相对增多,晶粒发育渐趋完善:晶种的引入有效地降低了α-Al2O3成核的活化能,有利于α-Al2O3形成;矿化剂的种类对水热合成α-Al2O3的作用效果差别很大,加入矿化剂KBr更有利于α-Al2O3生成和晶体发育.发育完善的α-Al2O3呈六方柱状,晶体显露{0001}和{11 2 0}面族.最佳的实验工艺条件为:固相含量5%,反应温度390℃,保温时间2h,晶种加入量5%质量分数),填充度40%(体积分数),矿化剂KBr加入量0.5mol/L.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号