首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
用柠檬酸作为燃烧剂、聚乙二醇为分散剂,采用柠檬酸凝胶燃烧法制备Er,Yb:(YGd)_2O_3纳米粉体,最佳工艺条件为:Gd~(3+)的掺杂量为30%(摩尔分数,下同),Er~(3+)的掺杂量为4%,溶液的pH为8,纳米粉体平均粒径约为65nm。样品的激发和发射光谱中,在379 nm处样品的激发峰最强,Er~(3+)的~4I_(15/2)→~4G_(11/2);在562 nm处的发射峰最强,Er~(3+)对应的跃迁为~4S_(3/2)/~2H_(11/2)→~4I_(15/2)。在562nm处出现的绿光对应Er~(3+)的~4S_(3/2)/~2H_(11/2)→~4I_(15/2)跃迁,在658nm处出现的红光对应Er~(3+)的~4F_(9/2)→~4I_(15/2)跃迁,并对其发光跃迁机制进行了讨论。  相似文献   

2.
采用柠檬酸燃烧法,1 000℃煅烧2 h得到Gd~(3+)掺杂量为25%(摩尔分数,下同)的Er,Yb:(LuGd)_2O_3陶瓷粉体。研究了Er~(3+)、Yb~(3+)掺杂量对粉体发光强度的影响。粉体的发光性能表明,掺杂量为4%Er~(3+)和5%Yb~(3+)的粉体样品的激发和发射光谱强度最大,在563和661 nm处有较强的发射峰,对应Er~(3+)的~4S_(3/2)/~2H_(11/2)→~4I_(15/2)跃迁和~4F_(9/2)→~4I_(15/2)跃迁。采用掺杂量分别为4%Er~(3+)、5%Yb~(3+)和25%Gd~(3+)在1 000℃煅烧的Er,Yb:(LuGd)_2O_3粉体作为原料,用冷等静压–真空烧结技术在1 800℃烧结20 h制备出Er,Yb:(LuGd)_2O_3陶瓷,尺寸为?10 mm×l mm陶瓷样品的平均透过率为68.7%。陶瓷样品的上转换发射峰强度高于粉体样品。  相似文献   

3.
以柠檬酸为燃烧剂,采用柠檬酸燃烧法制备Er,Yb:YSAG纳米粉体。通过对不同煅烧温度下样品的X射线衍射和扫描电子显微镜分析,确定最佳煅烧温度为900℃。测试了室温条件下样品的激发和发射光谱。结果表明:在381 nm处激发峰最强,对应Er~(3+)的~4I_(15/2)→~2H_(9/2)能级跃迁;最强发射峰在1 547 nm处,对应Er~(3+)的~4I_(13/2)→~4I_(15/2)能级跃迁。测试了样品的上转换荧光光谱,研究了Er~(3+)和Yb~(3+)掺杂量对样品发光强度的影响,得到了Er~(3+)和Yb~(3+)的最佳掺杂量分别为3%和9%,讨论了绿光、红光的发光跃迁机制,验证样品发光为双光子过程。  相似文献   

4.
采用热分解法以十八烯和油酸作为反应的溶剂,制备了LaF_3:Yb/Er@NaYF_4上转换纳米颗粒。X-射线衍射(XRD)结果表明:所合成的核纳米颗粒为立方相LaF_3:Yb/Er,LaF_3:Yb/Er@NaYF_4与立方相NaYF_4完全对应,且包覆后的平均粒径约为15nm。透射电子显微镜(TEM)结果表明:样品具有明显的核壳结构,具有单分散性,且形貌均一、结晶性高;在980nm近红外光激发下,荧光光谱中波长在524nm和543nm附近发出来自于Er~(3+)的~2 H_(11/2)→~4I_(15/2)的绿光和~4S_(3/2)→~4I_(15/2)的黄光,664nm附近发出来自于Er~(3+)的~4F_(9/2)→~4I_(15/2)的红光。利用LgIem∝LgInex公式对发光带峰面积随激发光功率变化的数据进行拟合,证明该样品属于双光子能量吸收过程。  相似文献   

5.
采用溶胶凝胶-燃烧法,柠檬酸为络合剂合成出系列GdAlO_3∶Eu~(3+)和LaAlO_3∶Eu~(3+)荧光粉及GdAlO_3∶Er~(3+), Yb~(3+)上转换发光粉。利用X射线衍射(XRD)、扫描电子显微镜(SEM)、荧光光谱和上转换发光光谱对样品的结构、形貌和发光性能进行了研究。XRD分析表明:1000℃热处理获得具有正交结构的GdAlO_3∶Eu~(3+)荧光粉和GdAlO_3∶Er~(3+),Yb~(3+)上转换发光粉及具有六方结构的LaAlO_3∶Eu~(3+)荧光粉。柠檬酸比例和热处理温度对发光粉晶粒尺寸和晶相的形成有影响。荧光光谱研究表明:荧光粉的主发射峰来自于Eu~(3+)离子的~5D_0→~7F_2跃迁。柠檬酸比例及基质阳离子影响Eu~(3+)离子的局域对称环境。GdAlO_3∶Er~(3+),Yb~(3+)上转换发光粉在980 nm红外光激发下,发射来自于Er~(3+)离子~2H_(11/2)、~4S_(3/2)到~4I_(15/2)跃迁和~4F_(9/2)到~4I_(15/2)跃迁。计算并比较了GdAlO_3∶Eu~(3+),LaAlO_3∶Eu~(3+)和GdAlO_3∶Er~(3+),Yb~(3+)样品的色坐标。  相似文献   

6.
采用高温固相法在600~1100 ℃范围内选择6个不同烧结温度制备了系列相同配方的Er~(3+)/Yb~(3+)共掺氟氧化物上转换发光粉末.在室温下对各样品采用波长为980 nm泵浦光激发,肉眼均可观察到峰值位于658 nm、539 nm和523 nm处的上转换红光和绿光,分别对应于Er~(3+)的~4F_(9/2)→~4I_(15/2)和~4S_(3/2)/~2H_(11/2)→~4I_(15/2)能级跃迁,且红光强度大于绿光强度.通过比较,各样品的上转换图谱形状完全相同,而红绿上转换发光强度明显不同,800 ℃烧结制得样品的红绿荧光强度最强.样品的绿色荧光强度与红色荧光强度的比值随烧结温度升高而增加.通过各样品的X射线粉末衍射图谱(XRD)分析其成分结构,发现烧结温度对样品的成分含量有较大影响.通过测量不同烧结温度下制得样品的上转换发光强度与激发功率的变化关系,发现不同烧结温度可改变样品的上转换发光机理.  相似文献   

7.
采用水热法合成Ba_(1-x-1.5y)Sr_xMoO_4:ySm~(3+)系列红色荧光材料,对其进行了表征,考察了Ba~(2+)和Sr~(2+)含量及Sm~(3+)掺杂量、反应温度和pH值对材料相结构、荧光性能和微观形貌的影响.结果表明,pH=7、反应温度130℃条件下合成的Ba_(0.843)Sr_(0.15)MoO_4:0.005Sm~(3+)具有最佳的发光性能和显微形貌,在波长405 nm的荧光激发下,粉体的发射光谱呈现三峰发射,分别位于564,600,648 nm,分别来自Sm~(3+)的~4G_(5/2)→~6H_(5/2),~4G_(5/2)→~6H_(7/2)和~4G_(5/2)→~6H_(9/2)的电子跃迁,其中以~4G_(5/2)→~6H_(9/2)的跃迁发射强度最强.  相似文献   

8.
以碳酸氢铵为沉淀剂,采用共沉淀法制备了Er,Yb:(La Gd)2O3纳米粉体。经1 000℃煅烧2 h得到的粉体颗粒呈规则球形,平均粒径约为90 nm,团聚低,分布均匀。研究了Er3+,Yb3+的掺杂量对样品发光强度的影响。结果表明:掺杂Er3+和Yb3+的摩尔分数分别为4%和5%时,所得样品的发光性能最优。样品的激发和发射光谱显示:在379 nm处激发峰最强,对应Er3+的4I15/2→4G11/2能级跃迁;最强发射峰位于562 nm处,对应于4S3/2/2H11/2→4I15/2能级跃迁。样品的上转换光谱表明:样品在548和662 nm有较强的发射峰,对应Er3+的4S3/2/2H11/2→4I15/2跃迁和4F9/2→4I15/2跃迁。并讨论了发光跃迁机制。  相似文献   

9.
以Pr(NO_3)_3、Sm(NO_3)_3、Na_2MoO_4·2H2O、SrCl_2·6H_2O为原料,采用化学共沉淀法,通过控制掺杂稀土离子的比例和煅烧温度制得一系列的以SrMoO_4为基质的荧光体粉末。XRD结果表明,稀土离子的掺杂量为9%时不会引起基质结构的改变。荧光光谱分析表明,在煅烧温度为800℃时样品的发光性能最好。固定激发波长为λ_(ex)=250 nm,Pr~(3+)在486,619,645 nm处有一组较强的发射峰,对应于Pr~(3+)的~3H_4→~3P_0、~3P_0→~3H_6、~3P_0→~3F_2的跃迁。Sm~(3+)发射光谱中位于566,601,648 nm发射峰,分别对应于Sm~(3+)的~4G_(5/2)→~6H_(5/2),~4G_(5/2)→~6H_(7/2),~4G_(5/2)→~6H_(9/2)的跃迁。  相似文献   

10.
采用高温固相法合成了一系列NaBaSi_xP_(1-x)O_4:Eu~(3+)橙红色荧光粉。表征了荧光粉的晶体结构和发光性能。考察了煅烧温度和Si~(4+)掺杂量对荧光粉结构和发光性能的影响。结果表明:掺杂Si~(4+)对荧光粉的晶型没有明显影响,但是导致了晶格膨胀。750℃煅烧时基质已形成NaBaPO_4相,晶型为六方晶系,荧光粉发射峰强度最强。激发光谱由200~280 nm的宽带和310~500 nm的一系列尖峰组成,分别对应于O~(2–)→Eu~(3+)电荷迁移带和Eu~(3+)的f→f能级跃迁吸收,最强激发峰位于393 nm左右,与近紫外LED芯片的发射光谱匹配。在393 nm近紫外光激发下,最强发射峰和次强发射峰分别位于红光616 nm和橙光591 nm附近,分别属于Eu~(3+)的~5D_0→~7F_2和~5D_0→~7F_1特征跃迁。NaBa_(0.92)Si_xP_(1–x)O_4:0.08Eu~(3+)中Si~(4+)的最佳掺杂量为0.02 mol,Na Ba_(0.92)Si_(0.02)P_(0.98)O_4:0.08Eu~(3+)样品在616和591 nm附近的发射强度比单掺杂Eu~(3+)的样品分别提高了66.6%和63.6%。  相似文献   

11.
通过熔融淬冷法制备了掺杂0.6%(占基质玻璃的质量分数)Er~(3+):65GeS_2-25Ga_2S_3-10CsI(摩尔比)玻璃。通过不同热处理工艺对玻璃样品进行微晶化处理获得了硫卤微晶玻璃。测试了其密度、显微硬度、红外透过光谱、以及中红外荧光光谱。对比研究了基质玻璃与微晶玻璃样品之间性能差异。结果表明:基质玻璃在热处理温度为440℃,热处理时间为14 h后,所获得的微晶玻璃样品的密度和显微硬度明显增加,中远红外透过性能并未有显著的降低,Er~(3+):~4I_(11/2)→~4I_(12/2)跃迁相对应的2.8μm处的中红外荧光光强稍有增强。  相似文献   

12.
以Pr(NO_3)_3、Sm(NO_3)_3、Na_2MoO_4·2H2O、SrCl_2·6H_2O为原料,采用化学共沉淀法,通过控制掺杂稀土离子的比例和煅烧温度制得一系列的以SrMoO_4为基质的荧光体粉末。XRD结果表明,稀土离子的掺杂量为9%时不会引起基质结构的改变。荧光光谱分析表明,在煅烧温度为800℃时样品的发光性能最好。固定激发波长为λ_(ex)=250 nm,Pr(3+)在486,619,645 nm处有一组较强的发射峰,对应于Pr(3+)在486,619,645 nm处有一组较强的发射峰,对应于Pr(3+)的(3+)的3H_4→3H_4→3P_0、3P_0、3P_0→3P_0→3H_6、3H_6、3P_0→3P_0→3F_2的跃迁。Sm3F_2的跃迁。Sm(3+)发射光谱中位于566,601,648 nm发射峰,分别对应于Sm(3+)发射光谱中位于566,601,648 nm发射峰,分别对应于Sm(3+)的(3+)的4G_(5/2)→4G_(5/2)→6H_(5/2),6H_(5/2),4G_(5/2)→4G_(5/2)→6H_(7/2),6H_(7/2),4G_(5/2)→4G_(5/2)→6H_(9/2)的跃迁。  相似文献   

13.
以NH4HCO_3为沉淀剂,用共沉淀法制备Sm:(YLa)_2O_3纳米粉体,采用冷等静压-真空烧结技术在1 750℃烧结20 h得到Sm:(YLa)_2O_3透明陶瓷。研究了粉体的形貌、激发和发射光谱。结果显示:制备的纳米粉体呈球形,分散性好,粒度分布均匀,平均粒径约为75 nm,该粉体Sm~(3+)最佳掺杂摩尔分数为1%;最强激发峰位于408 nm处,对应于Sm~(3+)的~6H_(5/2)→~4F_(7/2)能级跃迁;最强发射峰位于609 nm处,对应于Sm~(3+)的~4G_(5/2)→~6H_(7/2)能级跃迁。陶瓷样品的透过率和吸收光谱测试表明,陶瓷最佳烧结温度为1 750℃,在此温度下制备的陶瓷样品在可见光波段和红外波段的平均透过率分别为69.46%和74.77%。  相似文献   

14.
采用共沉淀法制备了Yb~(3+)/Er~(3+)共掺的Y_2O_3上转换荧光材料,利用X-射线衍射仪(XRD)、扫描电镜(SEM)、荧光光谱仪(以980 nm激光器作为光源)对合成样品的结构、形貌、发光性能进行了表征。分析结果表明:所制备的样品物相与Y_2O_3基质的物相基本一致;在扫描电子显微镜观察下,Y_2O_3:Yb~(3+)/Er~(3+)呈片状;当用980 nm激光激发样品时,可以观测到波长位于525 nm、550 nm处的绿色发射和波长位于660 nm处的红色发射光谱,分别对应于Er~(3+)的2H11/2,4S3/2→4I15/2和4F9/2→4I15/2特征跃迁。  相似文献   

15.
用高温熔融法制备了Tm~(3+)和Ho~(3+)双掺的86GeO_2-4Nb_2O_5-10Na_2O锗铌酸盐玻璃,应用Judd-Ofelt理论,获得了Tm~(3+)的强度参量及Tm~(3+)的自发辐射跃迁几率、辐射寿命等光谱参量。根据McCumber理论,计算了玻璃中Tm~(3+)能级~3H_6→~3F_4跃迁和Ho~(3+)能级~5O_8→~5I_7跃迁和Ho~(3+)的吸收截面σ_a受激发射截面σ_a和增益光谱G(λ)。在808 nm激光二极管激发下,研究分析了Tm~(3+)敏化Ho~(3+)的2.0μm的红外发射光谱。结果表明:Ho~(3+)的共掺提高了Tm~(3+)(~3F_4)→Ho~(3+)(~5I_7)之间的能量转移效率,增强了2.0μm的红外发光。  相似文献   

16.
采用水热法制备出NaY(WO4):Yb3+,Er3+纳米发光粉。通过X射线衍射、扫描电子显微镜表征了制备的发光粉样品;研究了不同Yb/Er摩尔比对发光强度的影响。结果表明:Yb3+和Er3+共掺杂的NaY(WO4)2属于四方晶系,其粒径在30 nm左右,且分散均匀。当Yb/Er摩尔比为4:1时,NaY(WO4):Yb3+,Er3+发光粉样品的发射峰强度达到了最大值。用980nm激光对其进行激发,在室温下观察到了410、524、553和656nm的发射峰,分别对应于2H9/2→4I15/2,2H11/2→4I15/2,4S3/2→4I15/2和4F9/2→4I15/2的跃迁。根据激发功率与发光强度的关系得出410、524、553和656 nm发射峰均为双光子过程。  相似文献   

17.
采用直接沉淀法制备掺铒氟化钙(Er3+:CaF2)纳米粉体,通过X射线衍射仪、场发射扫描电子显微镜、透射电镜、分光光度计和电感耦合等离子发射光谱仪等分析手段研究了不同反应溶液浓度对Er3+:CaF2纳米粉体结构、形貌、粒径和Er3+真实掺入量的影响。结果表明:随着反应溶液浓度的增大,粉体颗粒尺寸逐渐减小,团聚程度加剧,Er3+的真实掺入量逐渐减少。反应溶液浓度为0.5mol/L时合成粉体分散性最好,颗粒平均尺寸约为32 nm,有利于制备性能优异的Er3+:CaF2透明陶瓷。在978 nm激光二极管激发下,该粉体实现了绿色(530~550 nm)和红色(650~660 nm)两种上转换发光,与之对应的Er3+辐射跃迁分别属于2H11/2、4S3/2→4I15/2和4F9/2→4I15/2,相对绿光而言红光发射强度较强。  相似文献   

18.
采用高温固相法合成了K_3Lu_(1-x)Eu_xSi_2O_7(x=0.1)荧光粉。系统讨论了Eu~(3+)在K_3Lu Si_2O_7的正八面体LuO_6真空紫外-紫外-可见的激发、发射光谱及荧光寿命。结果表明,K_3Lu_(1-x)Eu_xSi_2O_7的电荷迁移带(CTB)位于~225 nm左右,基质吸收带位于~199 nm。分别在147 nm和172 nm波长激发时,发射主要以Eu~(3+)电偶极子跃迁(~5D_0-~7F_2)为主相对发光强度约为商业红粉(Y,Gd)BO_3:Eu~(3+)的55%和80%,色坐标(0.589,0.382),荧光寿命τ_(1/e)=1.78 ms,是一种潜在的应用于真空自外激发发射的红色荧光材料。  相似文献   

19.
采用提拉法生长了掺0.25%(摩尔分数,下同)Yb2O3,0.25%Er2O3和(0.5%、1.0%、1.5%)In2O3的3种同成分In∶Yb∶Er∶LiNbO3晶体。通过晶体的红外光谱,解释了In3+,Yb3+和Er3+在晶体中的占位,由于Yb3+和Er3+离子的掺入,在In∶Yb∶Er∶LiNbO3晶体中In3+既占据Li位又部分占据Nb位,使2%In∶Yb∶Er∶LiNbO3晶体达到阈值浓度。采用980nm二极管激光器测试了In∶Yb∶Er∶LiNbO3晶体上转换发射光谱。结果表明:晶体的绿光上转换发射中心波段位于525、550nm处,分别相应于Er3+的2 H11/2→4 I15/2跃迁和4 S3/2→4 I15/2跃迁;上转换红光发射中心波段在660nm处,对应Er3+的4 F9/2→4 I15/2辐射跃迁。In3+能提高Yb∶Er∶LiNbO3晶体的抗光损伤能力,改变Er3+和Yb3+的局部环境及Yb3+对Er3+的敏化作用,使得In∶Yb∶Er∶LiNbO3晶体发光性能改变。  相似文献   

20.
采用高温固相法制备了Ce~(3+)、Sm~(3+)和Ce~(3+)/Sm~(3+)掺杂的Ca_9Al(PO_4)_7荧光粉。以327 nm紫外光作为激发源时,Ca_9Al(PO_4)_7:Ce~(3+)在386 nm处出现宽发射峰,其发射对应于Ce~(3+)的4f 05d1→4f 1跃迁的蓝色光,主峰位于386 nm;在407 nm近紫外光激发下,Ca_9Al(PO_4)_7:Sm~(3+)发射红色光。为了增强Ca_9Al(PO_4)_7:Sm~(3+)的发射强度,将Ce~(3+)引入到材料中,通过Ce~(3+)到Sm~(3+)的能量传递,有效地增强了材料的发射强度,为开展白光LEDs用红色荧光粉提供了参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号