首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Starch 2-hydroxy-3-mercaptopropyl ethers of degree of substitution (DS) up to 0.34 were prepared as follows: starch was reacted with epichlorohydrin to give 3-chloro-2-hydroxypropyl ethers which were treated with thiosulfate to displace chloride ion followed by reduction of the resulting thiolsulfonates with sodium borohydride. These mercapto ethers formed graft copolymers with acrylonitrile, styrene, acrylic acid, and dimethylaminoethyl methacrylate (DMAEMA) under hydrogen peroxide initiation. The resulting graft copolymers, after treatment with sodium borohydride to regenerate thiol groups from disulfides formed by peroxide oxidation, could then be reacted with additional monomer and peroxide to increase add-on of the synthetic moiety. Graft copolymers containing about 60% polyacrylonitrile or 70% polystyrene were thus obtained. Repeated graftings were carried out successfully with two, three, or four different monomers added sequentially. Hydrophobic monomers graft polymerized more readily onto graft copolymers containing hydrophobic chains, whereas hydrophilic monomers graft polymerized more readily onto hydrophilic graft copolymers. Graft copolymers prepared from acrylic acid and DMAEMA precipitated near the isoelectric point upon neutralizing their acidic or basic solutions.  相似文献   

2.
Graft polymerizations of vinyl acetate onto granular corn starch were initiated by cobalt-60 irradiation of starch-monomer-water mixtures, and ungrafted poly(vinylacetate) was separated from the graft copolymer by benzene extraction. Conversions of monomer to polymer were quantitative at a radiation dose of 1.0 Mrad. However, over half of the polymer was present as ungrafted poly-(vinyl acetate) (grafting efficiency less than 50%), and the graft copolymer contained only 34% grafted synthetic polymer (34% add-on). Lower irradiation doses produced lower conversions of monomer to polymer and gave graft copolymers with lower % add-on. Addition of minor amounts of acrylamide, methyl acrylate, and methacrylic acid as comonomers produced only small increases in % add-on and grafting efficiency. However, grafting efficiency was increased to 70% when a monomer mixture containing about 10% methyl methacrylate was used. Grafting efficiency could be increased to over 90% if the graft polymerization of vinyl acetate-methyl methacrylate was carried out near 0°C, although conversion of monomers to polymer was low and grafted polymer contained 40-50% poly(methyl methacrylate). Selected graft copolymers were treated with methanolic sodium hydroxide to convert starch–g–poly(vinyl acetate) to starch–g–poly(vinyl alcohol). The molecular weight of the poly(vinyl alcohol) moiety was about 30,000. The solubility of starch–g–poly(vinyl alcohol) in hot water was less than 50%; however, solubility could be increased by substituting either acid-modified or hypochlorite-oxidized starch for unmodified starch in the graft polymerization reaction. Vinyl acetate was also graft polymerized onto acid-modified starch which had been dispersed and partially solubilized by heating in water. A total irradiation dose of either 1.0 or 0.5 Mrad gave starch–g–poly(vinyl acetate) with about 35% add-on, and a grafting efficiency of about 40% was obtained. A film cast from a starch–g–poly(vinyl alcohol) copolymer in which homopolymer was not removed exhibited a higher ultimate tensile strength than a comparable physical mixture of starch and poly(vinyl alcohol).  相似文献   

3.
A series of well-characterized starch–g–polyacrylonitrile (PAN) graft copolymers was prepared from corn starch which had been heated in water at temperatures up to 94°C to vary the extent of starch granule swelling and disruption. Graft polymerization onto gelatinized starch gave less frequent grafting of higher molecular weight PAN than comparable graft polymerizations onto ungelatinized starch. A graft copolymer was also prepared from gelatinized starch under high dilution conditions to give lower molecular weight grafted PAN and more frequent grafting. Graft copolymers were then saponified with sodium hydroxide to convert nitrile substituents to a mixture of carboxamide and sodium carboxylate. Saponified graft copolymers were only partially water soluble and consisted largely of highly swollen, insoluble gel, which was separated from solubles for the study of physical properties. Saponification mixtures were also dried to yield highly absorbent polymer films. With the exception of the graft copolymer prepared under high dilution conditions, the physical properties of saponified graft copolymers depended on whether or not the granules of starch were gelatinized before graft polymerization. Compared with saponified graft copolymers derived from ungelatinized starch, those prepared from gelatinized starch gave films that absorbed larger amounts of aqueous fluids. Also, the gel fractions from these saponified gelatinized polymers exhibited higher water swelling, lower shear modulus, and a lower reduced viscosity function (η/cQ). The saponified graft copolymer prepared from gelatinized starch under high dilution conditions more closely resembled those prepared from ungelatinized starch, suggesting that molecular weight of grafted PAN and the grafting frequency rather than starch granule pretreatment might be the most important factor which influences properties.  相似文献   

4.
The title monomer (I) has been graft polymerized onto whole wheat starch with both ceric ammonium nitrate and ferrous ammonium sulfate–hydrogen peroxide initiation. Three graft copolymers, which contained 4.5, 12.1, and 15.2% grafted poly(I), were characterized as to molecular weight of grafted branches and grafting frequency. Graft polymerization was proved by fractional precipitation. Graft copolymers were tested as flocculating agents for diatomaceous silica and nonmagnetic iron ore. The graft copolymers with 12.1 and 15.2% grafted poly(I) compared favorably in flocculating ability with a commercial high molecular weight cationic polyacrylamide.  相似文献   

5.
The scope of graft reactions to produce starch-based latexes was extended by graft polymerization of acrylonitrile (AN) onto gelatinized cationic starch possessing quaternary amine functionality and by graft terpolymerization of AN and t-butylaminoethyl methacrylate (TBAEM) onto gelatinized starch by cerium (IV) initiation at 25°C. Grafting onto starches containing highly basic quaternary amines gave polyacrylonitrile [poly(AN)] grafts having about one fourth the number-average molecular weight (M?n) (178,000–232,000) of those produced by grafting AN onto starches containing the less basic tertiary amine groups. Sonification at 20 KHz of graft polymerization reaction mixtures having up to 8% solids reduced viscosities from 400–3000 cP to 10–40 cP. Diameters of dried particles measured about 300–1500 Å. Shaker-type agitation during grafting onto starch having quaternary amine groups produced poly(AN) chains with lower M?n values than those produced during blade stirrer-type agitation. M?n values of grafted poly(AN) decreased with increasing reaction time, degree of substitution of amine in the starch, gelation time of cationic starch at 95°C, and cerium (IV) concentration. AN was copolymerized with TBAEM at molar ratios of 14–85:1 in grafting onto gelatinized starch to yield copolymer side-chain grafts analyzing 8–52:1 of polymerized AN to TBAEM moieties.  相似文献   

6.
Preparation and Characterization of Starch-g-Polymethacrylamide Copolymers   总被引:2,自引:0,他引:2  
In this article, methacrylamide was successfully grafted onto starch using benzoyl peroxide as a radical initiator in aqueous medium. The extent of grafting was found to be affected by the initiator, monomer, starch concentration, and temperature. The optimum initiator concentration is 2.0×10−3 mol/L. The graft yield was observed to increase with the monomer concentration and temperature. No optimum values for the monomer concentration and temperature were found. The overall activation energy for graft copolymerization was obtained. The grafted starches were characterized by Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), X-ray diffraction (XRD), and scanning electron microscopy (SEM). TGA thermograms showed that the thermal stability of starch increased as a result of grafting. SEM micrographs showed that the granular structure of starch was not maintained after graft copolymerization. The water uptake and moisture retainment values of starch graft copolymers were investigated.  相似文献   

7.
Mineral acid salts of dimethylaminoethyl methacrylate (DMAEMA) have been graft polymerized onto starch with ferrous ammonium sulfate–hydrogen peroxide initiation. The nitric acid salt was used in most reactions, and graft polymerizations were run in both water and aqueous–organic solvent systems. Increased monomer concentration in water led to an increase in both the percentage of poly(DMAEMA · HNO3) in the graft copolymer (percent add-on) and the molecular weight of grafted branches. Variations in initiator concentration altered the percent add-on only slightly but affected the molecular weight of grafted polymer significantly. When swollen starch, in contrast with unswollen starch was used in graft polymerization reactions run in water, the product had a higher per cent add-on and a larger number of grafted branches of lower molecular weight. The efficiency of starch–poly(DMAEMA · HNO3) graft copolymers as flocculants for diatomaceous silica increased with per cent add-on; however, variations in grafting frequency and graft molecular weight had less effect on the behavior of these materials as flocculants.  相似文献   

8.
Graft copolymerization of poly(acrylonitrile) onto cassava starch was carried out with potassium persulphate (PPS) as the free radical initiator using a response surface Box–Behnken design. Different levels of monomer concentration, initiator concentration, and temperature were used, and regression models were generated in terms of these factors, which can be used to predict the grafting level and efficiency at a given level of the factors. The grafted starches were characterized by FTIR, XRD, and SEM analyses and determination of %grafting (%G), N‐content, thermal properties, water and saline solution retention, and rheological properties. Under the conditions used, %G was found to depend only on the temperature used for the reaction. The maximum %G of 120.1 was obtained for the sample synthesized under the following conditions: weight of AN = 0.753 mol/10 g starch, weight of PPS = 0.284 g and temperature = 55°C, and the grafting efficiency was 30.03%. The absorption bands at 2243 cm?1 for the nitrile group (? CN) in the FTIR spectra of the products confirmed the grafting reaction. There was a decrease in crystallinity and disappearance of the granular structure after grafting of the starch. The melting temperatures of the graft copolymers determined by differential scanning calorimetry analysis were higher than that of the native starch. The grafted starches exhibited very high thermal stability as observed from the thermogravimetric analysis. The superabsorbent polymer prepared from the grafted starch by alkali saponification exhibited a maximum water absorbency of 636 g/g. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

9.
Graft polymerization of acrylic acid (AA) onto rice starch using postassium permanganate/acid redox system as initiator was investigated. When starch was reacted with KMnO4 solution, MnO2 was deposited onto starch. The dependence of MnO2 amount deposited was directly related to KMnO4 concentration. Subjecting the MnO2-containing starch to a solution consisting of monomer (AA) and acid (citric, tartaric, oxalic and hydrochloric acid) formed poly(AA)–starch graft copolymers. The graft yield, expressed as meq COOH/100 g starch, was measured by the amount of MnO2 deposited, AA concentration, material-to-liquor ratio, kind and concentration of acid, as well as temperature and duration. Finally, the newly prepared poly(AA)–starch graft copolymers were applied to cotton textiles to determine their suitability as sizing agents. The highest graft yield was obtained with citric acid and the least with hydrochloric acid, with tartaric and oxalic acid in between. The graft yield increased by increasing the concentration of acid to a certain concentration beyond which grafting leveled off. A similar trend was observed when the magnitude of grafting was related to the amount of MnO2 deposited. The graft yield increased by increasing the polymerization temperature from 30° to 50°C. Increasing the temperature to 60°C is accompanied by decreased grafting. On the other hand, fabric samples sized with poly(AA)–starch graft copolymers acquire higher tensile strength, elongation at break, and abrasion resistance than that sized with native rice starch, i.e., poly(AA)–starch graft copolymers serve as good sizing agents for cotton textiles. A tentative mechanism for grafting rice starch with AA using the KMnO4/acid redox system was elucidated. © 1995 John Wiley & Sons, Inc.  相似文献   

10.
A redox initiation system based on potassium persulfate/acetone sodium bisulphite (KPS/ASBS) was developed to initiate the graft copolymerization of vinyl acetate (VAc) monomer onto corn starch in aqueous solution. The grafting reaction was studied with respect to grafting yield (GY), grafting efficiency (GE) and total conversion (TC) and results obtained were compared with those a well-established redox initiation system namely potassium persulfate/sodium bisulphite (KPS/SBS). The effect of reaction variables such as redox initiator concentration, liquor ratio, reaction time and temperature as well as VAc concentration were investigated. The GY, GE and TC increased significantly with increase of the redox initiation concentration up to 8/16 mmol/l irrespective of the initiation system used. Moreover, optimal grafting was obtained at 60 C for KPS/ASBS redox system and 70 C for KPS/SBS redox system. Saponification of poly (vinyl acetate)-starch graft copolymers were effected using NaOH in three different bath media (n-hexane, acetone or methanol) to convert starch-g-poly(vinyl acetate) to starch-g-poly(vinyl alcohol). Higher extent of solubility in hot water of the saponified form was achieved by using a bath containing n-hexane/sodium hydroxide; however, increasing the graft yield higher than 26.3% decreases the solubility. The structures and thermal stability of starch, grafted starch copolymer and saponified grafted starch copolymer were characterized by infrared spectroscopy and thermogravimetric analysis. Moreover, the rheological behavior as well as sizing performance of the saponified grafted starch copolymers were evaluated and compared with the native starch and commercial polyvinyl alcohol.  相似文献   

11.
Seven monomers, which varied widely in water solubility and ionic charge, were graft polymerized onto both unswollen starch and starch that had been swollen by heating in water to 60°C. Polymerizations were initiated with ferrous ammonium sulfate hexahydrate–hydrogen peroxide and, where applicable, with ceric ammonium nitrate. Graft copolymers were freed of ungrafted homopolymer by solvent extraction and were characterized by weight percentage of synthetic polymer incorporated in the graft copolymer, molecular weight of grafted branches, and grafting frequency. The influence of starch granule swelling on graft copolymer structure varied with the monomer used and could not be predicted on the basis of water solubility of monomer or its resulting polymer. With acrylonitrile and acrylamide, swollen starch gave higher molecular weight and less frequent grafts than unswollen starch. However, methyl methacrylate, N,N-dimethylaminoethyl methacrylate · HNO3, N-t-butylaminoethyl methacrylate. HNO3, and 2-hydroxy-3-methacryloyloxypropyltrimethylammonium chloride produced less frequent graft of higher molecular weight when starch was unswollen. With acrylic acid, graft molecular weight was independent of starch granule swelling, although grafting was less frequent when swollen starch was used.  相似文献   

12.
Some mechanical properties of styrene and acrylonitrile copolymers grafted onto acrylic rubber are investigated. The impact strength of graft polymers depended upon the nature and the concentration of the catalyst, the composition and the intrinsic viscosity of the rubber, and the acrylonitrile content in the rigid matrix. The most desirable result was obtained when benzoyl peroxide as the catalyst, n-butyl acrylate–acrylonitrile copolymer of 7–10% acrylonitrile content, and about 0–5% acrylonitrile in the rigid matrix were used. Dynamic mechanical tests show the increase in efficiency of rubber modification by the grafted chains. The better weathering resistance of these graft polymers, as compared with commercial ABS plastics, was confirmed.  相似文献   

13.
Cellulose diacetate grafting poly(caprolactone monoacrylate) copolymers (CDA‐g‐PCLA) were synthesized by a two‐step reaction of cellulose diacetate (CDA) with poly(caprolactone monoacrylate) (PCLA). The isocyanate‐terminated intermediate (NCOPCLA) was prepared and grafted onto cellulose diacetate chains. The results of the structure analysis indicated that PCLA was connected to CDA by chemical bonding. The flow temperature of graft copolymers was lower than that of the pure CDA and decreased with increasing the grafting percentage. Outdoor soil burial tests and active sludge tests indicated that the graft copolymers have good biodegradability in natural conditions. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 85–90, 2003  相似文献   

14.
Amylography and scanning electron microscopy (SEM) studies on grafted copolymers of starch with methacrylic acid and methyl methacrylate demonstrated significant changes in the viscosity and granule disintegration characteristics, depending on the extent of grafting and the nature of the monomer. Marked viscosity changes were observed when the carboxyl groups of the starch‐graft‐poly(methacrylic acid) (SPMAA) were neutralized with sodium hydroxide. The viscosity modification was found to be dependent on the extent of neutralization, and a maximum was observed at 10–25% neutralization. With an increase in extent of neutralization, there was a decrease in gelatinization temperature. For a sample of SPMAA with a percentage grafting of 14.1, the gelatinization temperature decreased from 64°C for the acid form to 42°C for the fully neutralized form. The gelatinization temperature of the fully neutralized samples of SPMAA showed a linear relationship with the percentage grafting. SEM was used to elucidate the effect of grafting on the granule swelling characteristics of starch at various temperatures. In the case of starch‐graft‐polymethyl methacrylate (SPMMA), granule disruption on heating with water was observed. However, this did not lead to the build‐up of viscosity on gelatinization. This was explained to be caused by the hydrophobic nature of SPMMA. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 528–534, 2002; DOI 10.1002/app.10266  相似文献   

15.
Summary: In this paper, the graft of poly(propylene) fiber with acrylic acid is investigated. The effects of grafting temperature, monomer concentration, and grafting time on the grafting degree of acrylic acid onto poly(propylene) fiber are discussed. In contrast to the conventional method of determining the grafting degree gravimetrically, the acid‐base titration method used in this paper was more efficient, even at low grafting degree. High‐performance liquid chromatography (HPLC) was used to estimate the averaged length of the grafted poly(acrylic acid) chains on each grafted site of poly(propylene) backbone. And also a mechanism for the grafting polymerization is proposed.

Possible microstructures of two PP‐g‐AA samples at the same grafting degree.  相似文献   


16.
The effect of concentration, reactant ratios, temperature, and starch pretreatment on grafting of acrylonitrile onto starch were studied. Grafting was efficient at high concentrations (8–12% starch) when granular starch was used. The molecular weights for grafted polyacrylonitrile (PAN) were higher when gelatinized starch was used, but grafting efficiencies (grafted PAN/total PAN) were much lower. The molecular weight of the grafted side chain increased with increased concentration of reactants. The grafting frequency was highest when the reaction mixture was kept at 5°C and decreased with increased swelling of the starch. The starch–polyacrylonitrile graft copolymers were saponified and dried to give products which absorbed 75–440 ml H2O per gram and 20–70 ml synthetic urine per gram.  相似文献   

17.
Mixtures of acrylamide and the nitric acid salt of dimethylaminoethyl methacrylate (DMAEMA·HNO3) have been graft polymerized onto unmodified wheat starch with ferrous ammonium sulfate–hydrogen peroxide initiation. Graft polymerizations were carried out with both unswollen starch granules and granules that had been swollen by heating in water to 60°C. Ungrafted synthetic polymers were removed from graft copolymers by cold-water extraction and were characterized by their M?n and DMAEMA·HNO3 content. Graft copolymers were characterized with respect to per cent add-on, M?n and DMAEMA·HNO3 content of grafted polymer, and grafting frequency. Ungrafted synthetic polymers contained a mole percentage of DMAEMA·HNO3 equal to or greater than that present in the initial monomer mixtures; whereas in most grafted polymers the mole-% DMAEMA·HNO3 in the grafted branches was less than that in the starting monomers. At all monomer ratios examined, polymer grafted to swollen starch granules contained a higher percentage of DMAEMA·HNO3 then polymer grafted to unswollen starch. The influence of starch granule swelling on the molecular weight and frequency of grafted branches was correlated with the composition of the initial monomer mixture. It was determined that the effect of granule swelling on graft copolymer structure would be minimal when 25–30 mole-% DMAEMA·HNO3 was used. In an acetonitrile–water solvent system, reactions with 20 and 50 mole-% DMAEMA·HNO3 produced graft copolymers with less DMAEMA·HNO3 in grafted branches than corresponding graft polymerizations run in water. The flocculation of 3% aqueous suspensions of diatomaceous silica was examined with selected starch graft copolymers.  相似文献   

18.
Abstract

In this work, the factors that may affect the gamma radiation-induced grafting of methacrylic acid monomer (MAA) onto sago starch films were investigated. The graft copolymers were characterized by tensile mechanical testing, dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC), and infrared spectroscopy. The results showed that the highest grafting yield was obtained within the irradiation dosage level of 10–20 kGy and by using monomer concentration range of 15–20 wt%. The highest tensile mechanical properties were observed for sago starch films having 66% graft yield of MAA. The DSC thermograms indicated a decrease in the gelatinization temperature (temperature at which the disruption of the molecular orders in the starch granules occurs) of sago starch as a result of grafting. This behavior was explained on the basis that radiation grafting prevents the retrograddation process of starch (starch re-crystallization). On the other hand, the IR spectra indicate an increase in the intensity of the absorption band due to C?O stretching, confirming the occurrence of grafted chains of MAA.  相似文献   

19.
The graft copolymerization of methyl acrylate onto sago starch was carried out by a free radical initiating process. The free radicals were produced by the chemical initiation method in which ceric ammonium nitrate was used as an initiator. It was found that the percentages of grafting, grafting efficiency, and rate of grafting were all dependent on the concentration of ceric ammonium nitrate (CAN), methyl acrylate (MA), sago starch (AGU), mineral acid (H2SO4), and reaction temperature and period. The variables affecting the graft copolymerization were thoroughly examined. The optimum yield of grafting was obtained when the concentration of CAN, MA, AGU, and H2SO4 were used at 8.77 × 10−3, 0.803, 0.135, and 0.175 mol L−1, respectively. The optimum reaction temperature and period were 50°C and 60 min, respectively. The rate of graft polymerization was explored on the basis of experimental results and reaction mechanism. The evidence of grafted copolymers was investigated by using FTIR spectroscopy, TG, and DSC analysis. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 516–523, 2000  相似文献   

20.
Cyanoethyl cellulose (CE‐Cell) with two different degrees of substitution of 0.37 and 0.60 were prepared from cotton linter. The ionic‐xanthate method was used to graft the acrylonitrile onto CE‐Cell to form acrylonitrile‐grafted cyanoethyl cellulose (GCE‐Cell). The conditions of grafting such as sodium hydroxide concentration, grafting time, monomer concentration, and temperature were optimized. The hydrolyzed CE‐Cell and GCE‐Cell were applied for the adsorption of copper (II) ions from aqueous solution. IR spectroscopy was also used for further evaluation of CE‐Cell and GCE‐Cell. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 329–334, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号