首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
随着城市建设的发展,隧道下穿管线以及建(构)筑物基础事故案例逐渐增多,由隧道施工引起的地层沉降问题日益受到重视。针对这一问题,本文基于室内大型模型试验,以干砂为填料,通过调整模型箱底部沉降条的沉降量模拟了隧道施工过程中地层的沉降。分析了对不同深度土体沉降量、地层损失量,研究不同深度土层沉降规律以及地层损失量变化特征。试验结果表明,沉降槽宽度系数与土层埋深之间具有较好的线性关系;不同深度土层的沉降槽体积不是一个常数,与中心最大沉降量Smax以及沉降槽宽度系数i有直接关系;地层损失量受沉降发展程度、埋深等因素影响。  相似文献   

2.
关于盾构隧道施工引起管线变形和土层沉降的影响,相对于传统圆形盾构,类矩形盾构施工的研究较为少见,具有一定的新颖性。针对类矩形盾构隧道施工对邻近地下管线及土体沉降的影响,采用室内缩尺寸模型试验,考虑正常管线,非连续管线,非连续破损管线以及4种不同深度处的土体沉降的因素,分析砂土地层中,在管隧垂直工况下,类矩形盾构隧道开挖对地下管线变形及土体沉降的影响。试验结果表明:几种形式的地下管线沉降变形规律一致,均关于隧道轴线对称,呈"V"型分布;非连续管线最大沉降小于连续管线,管线两端在隧道宽度范围外的沉降大于连续管线;非连续管线弯矩变化趋势比连续管线缓和,最大正负弯矩值均小于连续管线;非连续破损管线在管线两侧负向弯矩变化较大;深层土体沉降符合高斯分布,土体最大沉降随土层埋深增加呈正比关系增大。  相似文献   

3.
盾构掘进诱发上覆管线的挠曲和脱空分析对其结构保护至关重要。基于双层Winkler地基并考虑管线上覆与下卧地基刚度差异,对盾构隧道开挖上覆管线挠曲和脱空进行理论与模型试验证实分析。基于荷载板试验对传统管线砂土地基承载理论加以修正,提出适用于盾构穿越管土相互作用分析的砂土地基刚度和极限承载力取值建议。参数分析发现,管线脱空宽度随管线抗弯刚度和隧道开挖地层损失增大而变大,但变化速率递减;当地层损失或管线抗弯刚度较大时,管土线弹性相互作用理论和考虑界面脱空的单层地基计算方法均高估了管线挠曲和弯矩,而考虑界面脱空的双层Winkler地基计算方法可更准确地预估管线挠曲。  相似文献   

4.
砂土隧道施工对下卧管线影响的试验和数值模拟分析   总被引:1,自引:0,他引:1  
对砂土中隧道施工引起管线性状变化进行了室内模型试验,分析了管土相互作用的一些宏观特性,为进一步进行三维颗粒流细观模拟提供必要的参数和宏观依据。在室内模型试验的基础上,建立了隧道垂直下穿既有管线颗粒流分析模型,验证了室内模型试验的宏观现象。在此基础上分析了隧道施工过程中管土相互作用的机理、管周土体的应力与位移以及管线的剪应变和弯矩。分析结果可为工程实践中确定管线加固位置提供理论依据。  相似文献   

5.
类矩形盾构隧道开挖使土体以不均匀沉降形式作用于地下管线,导致管线产生纵向变形、破坏。针对类矩形盾构隧道施工,采用室内缩尺寸模型试验,综合考虑管隧相对位置、管线埋深及土体损失率3个影响因素,研究类矩形盾构隧道在砂土地层中施工,地下管线沉降、变形及地表沉降的规律变化。研究结果表明:管隧垂直工况时,管线竖向位移曲线呈高斯分布,竖线位移反弯点出现在隧道轴线附近处,管线弯矩呈"M"型分布,最大竖向位移及弯矩位于隧道轴线正上方;管隧斜交工况所受影响比管隧垂直工况影响更大;管线埋深越大,管线受影响程度越深;管线竖向位移随土体损失率减小相应降低,隧道轴线正上方管线竖向位移与管线最大正弯矩及两个较大负弯矩减小幅度较大,管线两端受影响程度较小;地表沉降受土体损失影响较大,沉降值比管线大。  相似文献   

6.
针对新疆乌鲁木齐轨道交通浅埋暗挖法施工对管线沉降的影响,系统提出基于刚度修正的简化预测方法,并应用于管线沉降的预测。该方法先从工程经验、数值模拟及实测数据出发得到管线分布范围内地层沉降槽宽度与埋深的近似线性关系,基于地层损失不随埋深变化的假设求解地层最大沉降量与埋深的关系,即可求得无管线条件下地层沉降随深度变化的规律;再依据管线沉降刚度修正系数与管土相对刚度的关系对地层沉降进行修正,得到管线沉降的表达式和管线内力变形。研究表明,随着管线刚度增加,管线对土体变形的抵抗能力增强,管线实际沉降与原位置处的地层沉降差异明显,具体表现为管线沉降曲线的沉降槽宽度增加,最大沉降量减小。  相似文献   

7.
随着我国经济的发展,地铁已成为改善城市交通拥堵状况的主要途径之一。但地铁隧道的施工却又不可避免地带来诸多安全隐患,例如,由于隧道施工时土层的沉降,导致管线的破裂。本文旨在通过室内大型模型试验研究地铁盾构隧道开挖时上覆土层的沉降分布特征,分别测定不同深度地层的沉降值,通过对试验数据的分析与整理,得出沉降沿地层深度的分布规律。结果表明:同一深度的地层沉降基本符合peck公式曲线;地层沉降槽的宽度值i不会随沉降量的增加而变化,只与该地层的所处深度有关;并根据试验得出沉降槽宽度i的经验公式。  相似文献   

8.
隧道开挖和地面堆载以土体不均匀沉降的形式作用于管线,使管线产生纵向应力和变形。以物理模型试验手段研究了两种荷载形式下管土相互作用的差别、接头刚度对纵向响应的影响以及隧道开挖下的管土脱开现象。通过修正Gaussian曲线拟合自由土体位移场,对实测弯矩进行归一化处理发现,隧道开挖会引起管线周围相对土体模量下降,而地面堆载则会引起土体模量相对增大。非连续接头管线通过增大转角及变形来降低最大弯矩值,改善了管线的受力状态。当土层损失比增大到一定程度以后,管线下方将出现空洞,并随着损失比的增加而逐渐扩大,最终达到稳定。  相似文献   

9.
为了探明地表超载对软、硬地层中既有盾构隧道的影响,通过隧道与地层相互作用的模型试验,对地表超载作用下隧道变形、土压力及土体沉降进行了量测。试验结果分析表明,相同的地表超载作用下,软土地层中的隧道横椭圆变形要大于硬土地层中的隧道横椭圆变形。当隧道穿越土层的土体压缩模量较小时,地表超载作用下隧道上覆土层表现为被动土拱土压力;当隧道穿越土层的土体压缩模量较大时则为主动土拱土压力。隧道竖向收敛变形与其穿越土层竖向压缩量之间的关系分析表明,隧道横断面变形刚度与穿越土层的土体压缩模量共同决定隧道上覆土层的沉降状态,从而决定了地表超载对既有盾构隧道的影响。研究成果定性地揭示了软土地区既有盾构隧道在地表超载作用下极易发生变形超限的机理。  相似文献   

10.
富水地层中重叠隧道施工引起土体变形研究   总被引:2,自引:0,他引:2  
重叠隧道施工易产生隧道结构不稳定和地层变形等问题。重叠隧道富水地层施工时,土层开挖应力释放和地下水渗流共同作用使得地层和隧道变形问题显得更加突出,增加了施工难度。以深圳地铁5号线重叠隧道为背景,采用数值方法研究了开挖应力释放和渗流作用在重叠隧道施工不同阶段对隧道结构和土层变形的影响,得到富水地层重叠隧道施工土层变形规律,同时提出了控制地层变形措施。重叠隧道下洞施工时,采用设置超前注浆支护能有效控制开挖应力释放引起拱顶沉降,开挖完成后隧道拱顶在渗流作用下沉降稳定,而隧道上覆土层因失水固结产生较大工后沉降,同时地表沉降槽深度和半径在渗流作用下不断增大;为避免下洞隧道在渗流作用引起上洞隧道整体沉降,上洞在下洞施工引起土体变形稳定后进行施工。上洞开挖应力释放引起较大地层沉降,开挖应力释放引起较大地层沉降,渗流因素引起地层工后变形较小,地表沉降槽深度迅速增大而影响半径保持稳定。  相似文献   

11.
 采用自主研制的? 800 mm土压平衡盾构掘进试验系统,对砂卵石与砂土地层开展室内缩尺掘进试验研究,以分析土压平衡盾构掘进对地层的扰动特征;同时,针对室内缩尺掘进试验,开展离散元数值模拟以分析盾构掘进开挖面的变形与破坏形态。研究表明:砂土地层地表沉降曲面自上而下呈现逐渐收缩的“圆形漏斗”状,砂卵石地层地表沉降曲面自上而下呈现逐渐收缩的“V型河谷”状;砂卵石地层地表横断面沉降槽宽度系数相比砂土地层要小;2种地层地中沉降槽宽度参数都随地中深度比的增加而呈线性增大,相同深度比条件下砂卵石地层地中沉降槽宽度参数要小于砂土地层;砂土地层沉降时间效应曲线较为渐进和连续,而砂卵石地层则呈现突变性;2种地层开挖面破坏形态均为烟囱状,但砂卵石地层的开挖影响范围无论在横向还是纵向上都要小于砂土地层。  相似文献   

12.
 管线渗漏水是城市浅埋隧道施工安全事故的重要诱因,明确管线渗漏水对浅埋隧道围岩变形和破坏的影响规律是安全事故防控的基础。针对VI级围岩浅埋地铁隧道,采用平面应变模型试验研究管线渗漏水范围对围岩变形和破坏的影响规律。试验结果表明:(1) 管线渗漏水作用下,隧道尚未开挖就产生明显的地表沉降,随着渗漏水范围的增加,地表沉降值和沉降范围也随之增大,但当管线渗漏水范围到达拱顶后,其继续增大对地表沉降的影响程度明显减弱。(2) 管线渗漏水作用下,隧道开挖前地表即产生明显的竖向裂缝,随着地表沉降的增加,裂缝的深度和宽度均同步增加;隧道开挖后,地表竖向裂缝的深度和宽度随地表沉降的变化速率较隧道开挖前有所减小。(3) 管线渗漏水范围越大,隧道开挖后造成地层破坏的程度越剧烈;小范围管线渗漏水情况下,管线渗漏水范围对围岩破裂面形状的影响不大;中等范围和大范围管线渗漏水情况下,管线渗漏水范围的包络线和围岩破裂面高度吻合,且破裂面相对于无渗漏水影响的情况更为陡峭。  相似文献   

13.
《低温建筑技术》2016,(2):119-122
城市地铁隧道盾构施工过程中,由于地层损失引起周围土体变形,从而造成既有近接管线中产生附加应力。过大的附加应力会导致管线破坏,对城市运行造成较大影响。本文采用ABAQUS有限元计算平台,针对隧道与既有近接管线垂直工况,对盾构施工过程中隧道周围土体变形以及近接既有管线的变形和受力特性进行了分析。结果表明隧道正上方的土体随着埋深的增大沉降逐渐增大且各个沉降槽曲线均呈高斯分布;管线变形曲线与土体开挖面所在平面的沉降槽曲线相似,也服从高斯分布;并且隧道周围既有管线对周围土体沉降具有抑制作用。  相似文献   

14.
目前用于分析研究盾构隧道开挖诱发地层变位的室内模型试验往往无法模拟地层损失、隧道埋深、隧道动态推进等因素的影响效应。为此,采用自行研制的室内模型试验装置进行砂土中盾构隧道一次开挖完成及不同地层损失率条件下盾构隧道动态开挖的室内模型试验,获得的天然砂土地面沉降分布曲线特征与已有研究成果基本相符,表明该装置可模拟不同地层损失及盾构隧道动态施工。  相似文献   

15.
通过开展室内模型试验,探究地表堆载诱发下盾构隧道纵向受力变形特性。应用3D打印技术制作的盾构隧道模型,可以较好地反映真实盾构隧道管片结构特点,克服精细化盾构隧道模型制作困难的问题。首先通过开展盾构隧道模型集中荷载试验,探究盾构隧道纵向等效抗弯刚度变化规律;其次开展地表堆载试验,研究地表堆载诱发下盾构隧道受力与变形特征。试验结果表明:盾构隧道纵向等效抗弯刚度有效率并非一个常量,而是随着集中荷载增大而减小,本试验得到其值在0.176~0.044范围;在地表堆载诱发下,盾构隧道拱顶沉降呈正态分布曲线形态,主要沉降范围在加载宽度范围内;地表堆载作用下拱顶土压力分布变化特点与拱顶沉降相似;随着地表荷载增加,通过隧道中间环四周土压力监测发现,拱顶土压力增量最大,拱底次之,拱腰最小;受地表荷载作用,盾构隧道衬砌结构发生“横鸭蛋”状收敛变形,其中拱顶位移最大,拱腰次之,拱底最小。试验结果揭示了盾构隧道结构变形特性和地表堆载条件下盾构隧道与地层相互作用机制,对突发堆载下既有隧道的保护提供了参考依据。  相似文献   

16.
通过总结工程实测资料,指出地下管线刚度较大时,管体与地层之间存在较大的差异沉降。地下管线整体变形与地层移动规律基本相同,隧道垂直下穿时,管体沉降曲线基本符合正态分布。对隧道工程地表沉降预测Peck公式进行修正,建立地下管线变形预测公式,结合已有地层损失率V1研究成果,计算得出管线降槽宽度参数Kp的参考取值。数值模拟结果表明,隧道水平下穿较垂直下穿引起的管线变形大,预测公式可初步评价水平下穿时管线的变形。刚性管线纵向拉应变预测公式也可做相应修正,以计算管线自身的变形。工程应用实例表明,相关修正公式预测结果与模拟计算和实测结果较为吻合,具有较强的实用性。  相似文献   

17.
双线隧道开挖不同于单线隧道,为研究复合地层地铁双洞隧道开挖施工引起的地表沉降规律,文中基于青岛地铁四号线静沙区间的相关数据,通过数值模拟对双洞隧道上覆土层的不同组合施工沉降变形规律进行研究。分析结果表明,隧道上覆土层中砂土与黏土层厚度的变化,对双线隧道开挖地表沉降最大值、地表沉降和围岩的应力状态的影响较小,变化幅度也影响较小,即不同的上覆土层条件下,对双线隧道开挖地表沉降规律的影响相对较小。  相似文献   

18.
盾构施工会对埋藏在土体中的邻近地下管线产生变形、破坏等不利影响。目前模型试验已经成为研究盾构隧道施工对邻近管线影响的重要方法。考虑管隧位置、管线材质、管线埋深等影响因素,对盾构隧道施工影响邻近管线的室内模型试验进行了综述,分析管线产生较大弯矩、沉降等不利影响的原因。综合分析当前研究存在的一些不足,提出进一步的研究思路和研究方向,为后续模型试验研究提供参考。  相似文献   

19.
针对城市地下管线由于开挖引起的管土相互作用,给出了一种适用于描述任意位移荷载条件下管线的解析解公式,可以适用于城市隧道、基坑或其他形式的开挖引起的不同形式地层位移对城市地下管线应力变形影响的模拟。采用建议解答,对由于隧道开挖引起地下管线应力变形进行分析,并和采用管土相互作用单元的ABAQUS有限元分析程序计算结果进行了比较,结果验证了本文解析方法的可靠性。  相似文献   

20.
 以70余座浅埋暗挖法修建的隧道的实测数据为基础,对影响地层变形的各种因素进行统计分析,提出浅埋暗挖隧道的最大沉降量计算公式。同时还得到几点地层变形规律,如:最大地表沉降和拱顶下沉值的概率分布近似成正态分布;随着围岩稳定性由好变坏,地表沉降和拱顶下沉值也呈逐渐增大的趋势;隧道跨度为5~10 m时,II,III,V类围岩条件下的最大地表沉降值与上覆土层厚度关系呈凸形状,II,III类围岩的最大拱顶沉降值在埋深25 m范围内随隧道埋深增大而增大;拱顶沉降与地表沉降比值多为0.5~1.5;在埋深小于20 m范围内,沉降槽宽度多为(8~12)R(R为等效半径)。最后对50余座产生塌方隧道的坍落高度和塌方量进行统计,并对影响隧道塌方的主要因素进行分析。该研究成果为隧道进一步的设计、施工提供科学的参考依据,具有重要的实用价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号