首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
直流弱信号的开关放大采集是测控系统中最难解决好的关键问题。文中介绍了三种可供选择的多路弱信号放大转换电路,即使用ADC0816芯片的;增益可由程序调节的高精度的;高抗干扰性能、高精度、低速的。  相似文献   

2.
《微型机与应用》2017,(23):31-34
为了解决大气电场传感器输出信号噪声大的问题,对一般电荷放大电路的噪声模型进行了深入研究,并且基于三维大气电场传感器的结构设计了低噪声信号放大电路;在万用板上对所设计的信号放大电路进行调试,通过替换电路中的积分电容,得到不同积分电容下传感器轴向感应电极的输出电压波形,并对输出波形进行对比分析,得到最理想的低噪声信号放大电路设计方案。  相似文献   

3.
一种针对气体传感器阵列中气体传感器信号调理的电路,该电路包括传感器信号程控放大电路和滤波电路。其特征是放大电路采用程控多路开关和运算放大器的组合而成的程控放大,对不同的传感器信号,通过计算机统一控制程控开关,选择不同的通路调节信号放大的倍数;通过在运算放大器输入输出端添加电容防止高频干扰,并在运算放大器的输出端加滤波电路对信号进行滤波,以提高传感器检测精度。  相似文献   

4.
介绍一种采用直接数字化方案的脉宽调制(PWM)电路,它可把微小的电阻或电容信号调制成脉冲的占空比,从而实现A/D转换。通过对PWM原理的叙述及数学公式推论、误差分析可知,测量系统具有很高的测量精度及稳定性。经过处理可直接将数字信号送入微处理器。提高了系统的可靠性及响应速度,具有较强的抗干扰能力。  相似文献   

5.
放大电路ABC     
各种电子设备,如收音机、电视机、录音机、扩音机中都离不开各种电子放大器。放大器的作用是将微弱的电信号加以放大,或是将电信号逐级放大到一定幅度,驱动电路终端负载工作。如收音机从天线接收到的无线电信号是十分微弱的,它必须经过几级放大,才能推动扬声器播放出声音来。放大器在电子设备中可以说举足轻重、不可或缺。初学电子技术首先从放大器入门,对认识电路,读懂电路图是十分必要的。当前集成电路大行其道,或有人认为没有必要再从晶体管分立元件电路学起,孰不知,集成电路的基础正是晶体管电路的集合。一  相似文献   

6.
弱信号锁相放大CD552-R3电路   总被引:2,自引:0,他引:2  
锁相放大电路是微弱信号检测的重要方法.基于CD552-R3相敏检波芯片设计了一种锁相放大电路,应用于大背景噪声下微弱信号的检测.采用信号发生器产生的标准信号和染噪信号,对该锁相放大电路进行了鉴幅和鉴相性能测试,并在不同强度噪声下对弱信号进行检测.测试结果表明:研制的锁相放大电路输出线性度高于0.9999,具有良好的鉴幅和鉴相特性,能将信噪比为-36 dB的毫伏级信号提取出来,可用于大背景噪声下微弱信号的检测.  相似文献   

7.
8.
马乐弘 《自动化仪表》1989,10(11):40-41
A/D转换电路是数字仪表必不可少的组成部分,传感器的电阻信号准确地变换成数字仪表的模拟信号是保证数字仪表精确度的重要第一步。测温的热电阻、应变片的力传感器、可变精密电阻的远传压力表和多圈精密电位器的浮球液位计等都是电阻信号的传感器,其输出的电阻信号和被测参数(温度、压力、液位等)呈现线性关系或非线性关系,需通过不同的变换电路转换为数字仪表的模拟信号。 UQZ型浮球液位计、YTZ型远传压力表和G分度号铜热电阻等,输出的电阻信号和被测参数量程呈线性关系,可采用普通电桥和放大电路,见图1。  相似文献   

9.
设计了一种基于V/I转换电路的电流跟随器。对一种常见形式的V/I转换电路进行变形,得到一个存在一定系统误差的电流跟随器。通过对系统误差的分析,针对误差产生的主要因素提出了两种基于不同思想、不同形式的改进方案,得到两种改进型电路。理论推导、软件仿真及实际硬件电路测试都证明此方案合理可行。  相似文献   

10.
色敏传感器弱信号预处理分析   总被引:1,自引:0,他引:1  
在颜色测量中,各种色敏传感器产生的微弱光电流,首先经预处理转换成相应的电压信号,然后输入微机计算出各颜色参量.预处理电路的性能是决定测色精度的关键.本文  相似文献   

11.
介绍了ICL7650斩渡集成运放的性能,并采用该器件设计了一个弱信号的前置放大电路,通过mulfisim8软件进行仿真和测试,其增益、幅频特性、信噪比等性能指标都能达到设计的要求。该电路结构简单,对直流、低频微弱电信号放大具有一定的参考使用价值。  相似文献   

12.
介绍了ICL7650斩波集成运放的性能,并采用该器件设计了一个弱信号的前置放大电路,通过multisim 8软件进行仿真和测试,其增益、幅频特性、信噪比等性能指标都能达到设计的要求。该电路结构简单,对直流、低频微弱电信号放大具有一定的参考使用价值。  相似文献   

13.
摘要:基于相关检测原理设计了一种数字锁相放大器,重点研究了采样频率与相关运算结果的关系。发现参考信号为方波而采样频率与信号频率成一定关系时,系统相关运算存在固有误差。为减少该误差,首次将动态采样法引入数字锁相放大器设计中,运算发现动态采样的采样频率数越多,奇点产生的误差越少。基于LabVIEW软件对所设计的检测系统进行了仿真测试,测试结果表明该数字锁定放大器在信号幅度为5V、噪声标准差小于等于50时(SNR=-34.04dB),能有效地检测出频率为500KHz以下的信号,系统检测结果与理论计算值的相对误差基本不超过2%。  相似文献   

14.
双稳随机共振系统信号调制噪声效应用于弱信号检测   总被引:4,自引:0,他引:4  
通过对双稳系统随机共振模型的数值分析,得出在双稳系统输出信号中,有一个正弦信号成分和一个表现为维纳过程的噪声成分分别与输入的正弦信号和白噪声相对应。通过选择合适的系统参数,可以减小系统输出中信号和噪声之间的耦合效应。该系统可以大大抑制噪声,并在双稳系统中产生信号调制噪声效应。然后对双稳系统的输出信号作功率谱分析。不但可以辨识出淹没在白噪声中的微弱正弦信号的频率,还可以较精确地估算出微弱正弦信号的幅值。数值仿真表明,双稳系统的信号调制噪声效应可用于多个微弱正弦信号的检测。  相似文献   

15.
检测微弱信号最有效的技术就是锁定放大技术,当噪声为有色噪声或噪声频率等于被测微弱信号的频率或奇数倍时,传统的锁定放大器技术不能进行有效地抑制或消除。针对有色噪声的抑制和消除,提出了跳频、跳时锁定放大技术;针对抑制和消除与信号同频的噪声,提出了移相调制锁定放大技术;针对抑制和消除与频率为信号频率奇数倍的噪声,提出了奇次倍频同步调制锁定放大技术;并给出了相关的实现方法。  相似文献   

16.
针对强背景噪声下光寻址电位传感器中微弱电流信号检测困难的问题,设计了一种基于锁相放大原理的微弱光电流信号检测电路。该电路主要包括两部分:前置放大器和相敏检波器;其中,前置放大器主要由包括第一级电流电压转换电路在内的四级放大电路组成。系统选用高性能的AD8652作为前置放大器中的第一级运放,相敏检波器采用电子开关型芯片AD630实现信号的乘法运算。实验结果表明,当前置放大器增益设置为104、105、106时,整个锁相放大器检测系统的灵敏度分别为-1.2678×104V/A、-1.2651×105V/A、-1.2302×106V/A,该灵敏度与理论计算值的相对误差绝对值最大为3.38%,可检测的输入电流范围是100nA~180μA,频率响应范围是1kHz~1.2MHz;当外加白噪声时,系统输出值随着噪声的增大而增大,当噪声不超过待测信号的2.25倍时,系统输出值与无噪声的输出值之间的相对误差不超过5%。系统具有良好的稳定性和线性度,在微光电流信号检测中具有较好的应用前景。  相似文献   

17.
利用正弦信号的特殊性质,在信号未知的情况下通过多重自相关运算可检测出埋没于噪声中的微弱正弦信号.文中推导了算法的实现过程,并讨论了多重自相关法在白噪声背景下、有色噪声背景下等情况下的检测效果,并给出仿真结果.  相似文献   

18.
基于预测的混沌背景下微弱信号检测成为混沌背景中微弱信号检测研究重点之一;针对现阶段从预测误差中分离微弱信号的方法缺乏深入研究的现状,提出了一种基于奇异谱分析技术从预测误差中检测出微弱信号的新方法;该方法无需目标信号的任何信息,检测精度高,而且具有很好的普适性;实验结果表明该方法性能较传统的梳状滤波器滤波性能提高20dB左右,而且具有很强的实用性和通用性.  相似文献   

19.
微弱信号调理电路设计的好坏直接影响到被动傅里叶变换红外光谱仪(FTIR)的探测精度。基于HgCdTe光电导型红外探测器接受干涉光后输出的微弱电信号来设计前置检测电路和放大电路,该电路具有高增益、高信噪比、相位补偿功能,有效降低了噪声和温漂以及大的动态输入范围等特性。红外探测器将干涉红外光转换为10-8mA数量级的微弱电信号,在此输入条件下对信号调理电路进行实测,试验结果表明,该电路测量精度高,具有较好的稳定性,且结构简单易实现,可以在光谱仪应用中验证其正确性和可行性。  相似文献   

20.
电导率的检测是工业在线成分分析中的一个重要方法,在对于水的电导率检测中,由于信号很小,采用普通的检测方法无法从噪声中提取有用的检测信号,利用相关检测原理,设计了一种应用于水的电导率检测的锁相放大器,给出了信号驱动电路、前置放大、移相电路、开关式相敏检波等电路的实际的电路,并从理论上给予分析,作为电路参数选择的依据,从而能进一步提高整个测量系统的信噪改善比.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号