首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
异形钢纤维与混凝土粘结性能试验研究   总被引:2,自引:0,他引:2  
自行设计了异形钢纤维与混凝土粘结强度试验方法.以混凝土基体强度、钢纤维形状和钢纤维埋角为参数,制作了24组试件,进行了钢纤维与混凝土基体的粘结试验.试验结果表明:混凝土基体强度、钢纤维形状以及钢纤维埋角是影响钢纤维与混凝土界面粘结强度以及异形钢纤维在拔出过程中所耗能量的主要因素;界面粘结强度随混凝土基体强度的提高而增大;B型(书钉型)钢纤维的粘结性能和拔出时所耗能量均优于J型(剪切平直型)钢纤维;界面粘结强度以及钢纤维拔出时的总耗能随钢纤维埋角的增大而降低.  相似文献   

2.
对17组85个钢纤维与水泥砂浆粘结试件进行了拔出试验,分别研究了不同类型和强度的钢纤维与不同强度等级砂浆基体的粘结强度、粘结破坏时纤维的破坏形态与基体及纤维自身强度和形状的关系,同时比较了钢纤维形状和砂浆基体强度对粘结滑移曲线特征和粘结破坏能的影响。  相似文献   

3.
钢纤维高强混凝土与钢筋的粘结性能试验研究   总被引:1,自引:0,他引:1  
通过126个尺寸为150mm立方体的钢纤维高强混凝土标准试件,进行了钢筋全长粘结的拔出试验,分别量测出光圆钢筋、变形钢筋与钢纤维高强混凝土的荷载与自由端的粘结滑移关系,研究了钢纤维体积率和钢纤维类型对钢纤维高强混凝土粘结性能的影响。根据现行《钢纤维混凝上试验方法》进行的试验结果表明,钢纤维的加入对光圆钢筋与高强混凝土的极限粘结强度无显著影响;对变形钢筋与高强混凝土的极限粘结强度有一定影响,但缺乏明显的规律性。通过对试件破坏形态及试验结果的分析得出结论,现行《钢纤维混凝土试验方法》有关粘结性能的试验方法不适用于高强混凝土及钢纤维高强混凝土。  相似文献   

4.
采用单根纤维直接拉拔的方法,在不同温度以及不同水灰比条件下,对钢纤维与水泥砂浆粘结性能进行了试验研究。结果表明,随着温度的升高和水灰比的增大,钢纤维与水泥砂浆的粘结性能呈下降趋势,尤其在700℃时,粘结强度降低最为显著。  相似文献   

5.
异形钢纤维混凝土性能试验研究   总被引:2,自引:0,他引:2  
王志  胡晓波  鲍光玉  张竞男 《混凝土》2003,(11):25-26,50
通过试验研究了4种异形钢纤维对高强混凝土工作性能、物理力学性能和弯曲韧性的影-向。探讨了不同异形钢纤维的增强、增韧机理,并指出钢纤维的掺入,使混凝土以主拉应力控制的劈拉强度等具有一定早强性。  相似文献   

6.
为研究异型外观的钢纤维与混凝土的粘结性能,设计开发了弓型、螺旋型、端勾型、束状钢纤维等系列异型钢纤维,再分别将平直型和异型的钢纤维埋入砂浆中,开展了粘结强度的对比试验,并进行了分析。试验研究结果表明:钢纤维截面形态的改变使其与混凝土基体的粘结强度的增长超过100%;两端锚固作用改进后的钢纤维对粘结强度的提高是平直型钢纤维的400%;经过两类改进工艺叠加实施的异型钢纤维,对比平直型钢纤维,其粘结强度的提升超过了700%。  相似文献   

7.
钢纤维混凝土与钢筋粘结锚固性能的研究   总被引:2,自引:0,他引:2  
本文根据钢纤维混凝土与钢筋的一次拉拔和低周反复拉压锚固试验的结果,论证了钢纤维混凝土良好的粘结锚固性能,建立了钢纤维混凝土与钢筋粘结强度的计算公式,并通过可靠性分析提出钢筋设计锚固长度的建议。上述计算公式和建议与普通混凝土的相应计算公式和建议衔接,物理概念清楚,可供进行钢纤维混凝土结构设计时参考。  相似文献   

8.
作者在已研究出的磨细矿渣高强混凝土中掺入两端增大的凸痕型异形钢纤维,钢纤维体积率为1.5%,配合比按作者1996年提出的二次合成法设计,采用常规的全掺入法工艺和标准养护条件,研制出抗压强度达120MPa,劈裂抗拉强度达13MPa的超高强混凝土。这种钢纤维混凝土由于钢纤维体积率低、强度高,因而有较明显的经济意义,可广泛应用于土木工程。  相似文献   

9.
钢纤维膨胀混凝土与钢筋粘结性能研究   总被引:1,自引:0,他引:1  
田稳苓  黄承逵 《工业建筑》1999,29(7):48-50,63
为探讨钢纤维与膨胀剂的联合增强作用对变形钢筋与混凝土粘结性能的影响,采用不同的膨胀剂和钢纤维掺量,进行了变形钢筋与钢纤维膨胀混凝土的粘结拔出试验,量测了钢筋的拔出力和钢筋自由端的滑移,测得了其拔出粘结-滑移曲线;分析了钢纤维与膨胀剂联合作用对粘结强度和粘结破坏延性的影响;给出了与混凝土本身抗拉性能相关的、与试验结果符合良好的粘结强度计算公式。  相似文献   

10.
将纳米SiO_2、纳米CaCO_3、钢纤维同时掺入混凝土中,通过Losberg粘结试件和中心粘结试件的拉拔试验分析钢筋之间的粘结性能,讨论钢纤维体积率、纳米SiO_2含量、纳米CaCO_3含量、纳米材料种类对粘结性能的影响,结果表明增加基体混凝土强度可改善粘结性能;钢纤维体积率最佳值为1.5%,纳米SiO_2最佳含量为0.5%~1%,纳米CaCO_3最佳含量为2%。  相似文献   

11.
钢纤维增强异形柱框架节点受力性能试验研究   总被引:2,自引:0,他引:2  
为了解决异形柱框架节点的薄弱问题,对核心区应用钢纤维增强的异形柱框架中节点与同条件下未用钢纤维增强的异形柱框架中节点进行拟静力试验研究,对比分析异形柱框架中节点试件的破坏特征、中节点核心区的箍筋应变、混凝土应变及异形柱框架中节点的受剪性能,研究钢纤维增强的异形柱框架节点薄弱部位受力性能。研究结果表明:应用钢纤维增强的异形柱框架中节点试件的破坏特征得到改善;在异形柱框架节点核心区掺入钢纤维可以降低加载初期中节点核心区的箍筋应变,中节点腹板在平行于剪力方向的箍筋应变大于腹板垂直剪力方向的箍筋应变及翼缘处的箍筋应变;在中节点核心区掺入钢纤维可提高腹板混凝土的主拉应变和异形柱节点受剪承载力。  相似文献   

12.
13.
参照《混凝土结构试验方法标准》(GB50152-92),通过拔出试验,研究了再生混凝土与钢筋之间的粘结~滑移性能,分析了在钢筋屈服之前的荷载~钢筋滑移曲线变化趋势,考察了不同再生骨料取代率对再生混凝土与钢筋粘结性能的影响。试验结果表明:再生混凝土与钢筋的粘结性能和普通混凝土相似,再生骨料取代率对再生混凝土与钢筋的粘结性能影响不大。通过对试验数据的回归分析,对钢筋在再生混凝土中的锚固长度取值进行了初步探讨。  相似文献   

14.
对异型钢纤维从砂浆基体中进行了拔出试验 ,测定了纤维拔出载荷 位移全曲线 ,得到了纤维与砂浆基体间的粘结强度 ,比较了不同形状纤维的粘结强度、拔出耗能和变形特性等。试验证明 :凸球型纤维的拔出荷载 位移全曲线出现了第 2个峰值载荷 ,表明纤维有良好的抗拔能力 ,拔出过程中消耗更多的能量 ;凸球型纤维的拔出荷载明显大于波纹型纤维和平直型纤维 ;纤维端部的凸头加大了纤维在拔出过程中与基体间的摩擦力及机械咬合力  相似文献   

15.
根据8个T型钢混凝土试件的推出试验,研究了混凝土强度等级、混凝土保护层厚度和横向配箍率三个主要因素对型钢混凝土粘结滑移性能的影响,分析了荷载与加载端滑移曲线及型钢应力、粘结强度沿锚固长度的分布规律,探讨了T型钢混凝土粘结破坏机理、受力特点.试验结果表明,混凝土强度等级、保护层厚度以及配箍率对型钢混凝土粘结强度影响显著;在推出试验中,试件加载端混凝土受到拱效应作用,处于复杂的三向受压状态,提高了型钢与混凝土的粘结强度.  相似文献   

16.
通过外包钢纤维水泥砂浆加固混凝土试件的双面剪切试验,探讨老混凝土表面不同界面处理、钢纤维水泥砂浆强度对钢纤维水泥砂浆与老混凝土界面粘结强度的影响。结果表明:老混凝土表面粗糙度、钢纤维水泥砂浆强度对新老材料界面粘结强度有显著影响,二者的交互效应影响不显著。修补材料中钢纤维的掺入,对新老材料粘结强度的提高有一定影响。  相似文献   

17.
钢纤维高强陶粒混凝土与钢筋的粘结性能试验研究   总被引:1,自引:0,他引:1  
主要通过42个局部粘结的中心拔出试验,研究不同钢纤维体积率、不同钢筋直径和不同钢纤维长径比对钢纤维高强陶粒混凝土与钢筋粘结性能的影响;用能量吸收和等效粘结强度评价了钢纤维高强陶粒混凝土与钢筋之间的粘结韧性。试验结果表明:不掺钢纤维的高强陶粒混凝土的破坏形式为劈裂破坏,掺钢纤维的高强陶粒混凝土的破坏形式为钢筋拔出破坏;在其他条件相同的情况下,钢纤维掺量越高其极限粘结强度越高(相对于不掺钢纤维的陶粒混凝土,钢纤维体积率为0.5%,1%,1.5%时,其极限粘结强度分别提高了6.7%,13.4%,18.6%);直径为22mm的钢筋的极限粘结强度比直径为16mm的钢筋的极限粘结强度低12.3%。  相似文献   

18.
根据36个拉拔试件的试验结果,探讨了变形钢筋与钢纤维陶粒混凝土的粘结锚固机理,可供修订规范和工程应用时参考.  相似文献   

19.
钢纤维混凝土耐磨特性及机理分析   总被引:2,自引:0,他引:2  
本文综合论述了影响钢纤维混凝土(SFRC)耐磨性的各种因素,探讨和分析了 SFRC 的耐磨机理。试验表明,SFRC 具有比普通混凝土更好的耐磨性,影响耐磨性的主要因素为:混凝土组成材料自身的耐磨性,水灰比及纤维、集料与水泥基材界面的强化程度。  相似文献   

20.
通过中心拔出试验对钢纤维掺量为0%~2%的活性粉末混凝土与变形钢筋间的粘结性能进行研究,结果表明钢纤维掺入后能提高活性粉末混凝土的抗拉强度,改变粘结破坏形式,得到粘结应力-滑移曲线的下降段;钢纤维活性粉末混凝土与钢筋间的拔出粘结应力-滑移曲线可分为微滑移段、滑移段、非线性段及下降段四个阶段,劈裂粘结强度及极限粘结强度随钢纤维掺量的增加约呈线性增长。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号