首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
The synthesis of ultrathin films (UTFs) of NiFe‐LDHs has been achieved by means of an in situ hydrothermal approach, leading to a flat disposition of the LDH crystallites on the substrate, in clear contrast to the most common perpendicular orientation reported to date. Experimental factors like time of synthesis or the nature of the substrate, seem to play a crucial role during the growing process. The 2D morphology of the NiFe‐LDH crystallites was kept after a calcination procedure, leading to a topotactic transformation into mixed‐metal oxide platelets. Hereby, in order to study the catalytic behavior of our samples, a chemical vapor deposition process is explored upon the as‐synthesized films. In presence of a carbon source (ethylene), these films catalyze a preferential low‐temperature (550 °C) growth of bamboo‐like carbon nanotubes, in stark contrast to the different mixture of carbon nanoforms obtained from the bulk samples. This work opens the door for the development of UTFs based on LDHs, which may be of utmost importance in a wide range of potential applications ranging from magnetic storage, catalysis or biomedical applications, to electrochemical batteries, anti‐corrosion and superhydrophobic coatings.  相似文献   

5.
6.
7.
2D hybrid perovskites have shown great promise in the photodetection field, due to their intriguing attributes stemming from unique structural architectures. However, the great majority of detectors based on this 2D system possess a relatively low response speed (≈ms), making it extremely urgent to develop new candidates for superfast photodetection. Here, a new organic–inorganic hybrid perovskite, (PA)2(FA)Pb2I7 (EFA, where PA is n‐pentylaminium and FA is formamidine), which features the 2D Ruddlesden–Popper type perovskite framework that is composed of the corner‐sharing PbI6 octahedra is reported. Significantly, photodetectors fabricated on highly oriented thin films, which exhibit a perfect orientation parallel to 2D inorganic perovskite layers, exhibit a superfast response time up to ≈2.54 ns. To the best of the knowledge, this figure‐of‐merit catches up with that of the top‐ranking commercial materials, and sets a new record for 2D hybrid perovskite photodetectors. Moreover, extremely high photodetectivity (≈1.73 × 1014 Jones, under an incident power intensity of ≈46 µW cm?2), considerable switching ratios (>103), and low dark current (≈10 pA) are also achieved in the detector, indicating its great potential for high‐efficiency photodetection. These results shed light on the possibilities to explore new 2D candidates for assembling future high‐performance optoelectronic devices.  相似文献   

8.
9.
由于高频软磁薄膜材料具有巨大的应用前景因此获得了人们广泛的关注。对纳米合金软磁薄膜、纳米软磁颗粒膜、多层膜以及图形化薄膜进行了分类综述,分别介绍了各类薄膜的制备方法、化学成分、微观结构特点和高频物理性能,并对影响其性能的主要因素进行了讨论。由于纳米高频软磁薄膜材料相对于传统磁性材料具有显著优势,所以纳米合金软磁薄膜有望取代铁氧体作为制作高频磁性器件的主要应用材料。由于纳米软磁颗粒膜、多层膜以及新兴的图形化薄膜具有材料结构设计和物性剪裁的自由度,因此将是今后的重点研究方向。  相似文献   

10.
11.
12.
Hybrid organic–inorganic materials that are compositionally graded are excellent candidates for addressing the challenges related to the bonding of polymeric layers and inorganic substrates. Often, the synthesis of these hybrid materials involves the use of kinetically driven and dynamic solution systems where obtaining the desired hybrid molecular structures in the deposited film is not trivial. A coating process is used to selectively deposit a small fraction of the total species in solution with an optimized molecular weight, resulting in compositionally graded hybrid films that are organic‐rich toward the top and inorganic‐rich toward the bottom. This selective deposition technique provides a unique knob to fine tune the molecular structure of films deposited from dynamic solution systems, resulting in hybrid organic–inorganic films that exhibit an eightfold increase in adhesion of an epoxy/silicon interface.  相似文献   

13.
以化学气相沉积(CVD)法制备的石墨烯和碳纳米管的邻二氯苯分散液为原料, 采用滴涂法制备石墨烯/碳纳米管复合薄膜, 用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、拉曼光谱(Raman)和X射线光电子能谱(XPS)对其形貌和结构进行表征。实验发现随着碳纳米管分散液浓度的增大, 复合薄膜结构中碳纳米管的面密度线性增大。利用紫外-可见光谱仪和四探针测试仪表征了不同碳纳米管浓度下复合薄膜的透光率及其薄层电阻, 结果表明: 随着碳纳米管浓度的增大, 复合薄膜的透光率及其薄层电阻都将减小, 当碳纳米管浓度为0.1 mg/mL时, 复合薄膜的透光率(550 nm)及其薄层电阻分别为92.18%和0.998 kΩ/□。实验通过调节碳纳米管浓度制备得到不同性能的石墨烯/碳纳米管复合薄膜, 该复合薄膜在透明电极、场效应晶体管和激光锁模等方面具有潜在应用。  相似文献   

14.
焦栋茂  张旭东  王姝  李建功 《材料导报》2006,20(12):104-108
概述了软磁性单层膜、多层膜、颗粒膜的微波磁特性研究进展,对这些薄膜的基本磁性和微波磁性进行了总结和讨论,得出软磁纳米晶薄膜可望成为应用于微波领域的主体候选材料,指出了Co(Fe)基软磁性薄膜微波特性的研究方向.  相似文献   

15.
16.
17.
18.
19.
A fluid nematic‐like phase is induced in monodisperse iron oxide nanoparticles with a diameter of 3.3 nm. This supramolecular arrangement is governed by the covalent functionalization of the nanoparticle surface with cyanobiphenyl‐based ligands as mesogenic promoters. The design and synthesis of these hybrid materials and the study of their mesogenic properties are reported. In addition, the modifications of the magnetic properties of the hybridized nanoparticles are investigated as a function of the different grafted ligands. Owing to the rather large interparticular distances (about 7 nm), the dipolar interaction between nanoparticles is shown to play only a minor role. Conversely, the surface magnetic anisotropy of the particles is significantly affected by the surface derivatization.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号