首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 84 毫秒
1.
为了提取米糠水溶性膳食纤维,采用蛋白酶辅助提取米糠水溶性膳食纤维。利用Plackett-Burman试验设计和正交试验优化米糠水溶性膳食纤维提取工艺,并对米糠水溶性膳食纤维的理化性质进行研究。结果表明,碱性蛋白酶能够充分酶解米糠水溶性膳食纤维中的蛋白质,促使膳食纤维与蛋白分离,提高水溶性膳食纤维的提取率。L9(34)正交试验最终确定最优提取工艺:底物浓度0.9%,加酶量3 500 U/g,酶解pH 9.5。米糠水溶性膳食纤维的持水性为76.17%,其膨胀力为14.02 mL/g。研究结果表明,米糠水溶性膳食纤维是一种优良的食源膳食纤维。  相似文献   

2.
该研究以麦麸为原料,采用酶法提取不溶性膳食纤维(IDF),分别探究碱性蛋白酶和α-淀粉酶的用量和酶解时间对蛋白质和淀粉水解程度的影响,对IDF的提取条件进行优化,并对麦麸IDF的结构特征和理化性质进行研究。结果表明,碱性蛋白酶和α-淀粉酶用量分别为4 000 U/g麦麸和140 U/g麦麸,酶解时间分别为2 h时,得到麦麸IDF的纯度达82.56%。采用扫描电子显微镜、X-射线衍射仪和傅里叶变换红外光谱对麦麸IDF的结构进行表征,发现经酶法提取后的麦麸IDF具有明显孔洞及裂缝,表现出典型的I型纤维素结晶结构,主要组分包括纤维素、木质素和半纤维素。对麦麸IDF理化性质的研究发现,与麦麸相比,麦麸IDF的持水力(3.82 g/g)、膨胀度(2.59 mL/g)和持油性(1.78 g/g)均得到改善,说明其具有用于面制品、凝胶制品、肉制品等提高产品稳定性和感官品质的潜力。此外,麦麸IDF的亚硝酸根离子清除率达到95.63%,说明其可作为功能性食品配料降低亚硝酸盐对人体健康的影响。研究结果将对提高麦麸的附加值,及麦麸IDF在高品质健康食品中的应用提供指导。  相似文献   

3.
小米可溶性膳食纤维提取及其理化性质分析   总被引:2,自引:0,他引:2  
张荣  任清  罗宇 《食品科学》2014,35(2):69-74
采用酶法水浴浸提制备小米可溶性膳食纤维,比较不同液料比、提取温度、提取时间和溶液pH值对可溶性膳食 纤维含量的影响。采用四因素三水平中心组合设计得到可溶性膳食纤维的最佳提取工艺为:液料比15∶1(mL/g)、提取温 度73 ℃、提取时间2 h、pH 10,在此条件下可溶性膳食纤维(soluble dietary fiber,SDF)提取率可高达3.51 mg/g。此外还 对产品理化特性进行测定,在pH 7、25 ℃条件下溶解性达到71.7%,黏度和乳化能力及乳化稳定性随着产品质量浓 度增大而增加,在产品质量浓度为5 g/100 mL时分别为:4.20 cP、62.54%和97.53%,制得的SDF具有口感细腻,乳 白色的特点,可广泛应用于焙烤、汤料、乳制品、饮料等食品和化妆品中。  相似文献   

4.
为提高西番莲果皮废弃物的利用率,以西番莲皮可溶性膳食纤维(Passion Peel Soluble Dietary Fiber,PSDF)得率为评价指标,通过单因素实验分析料液比、酶解温度、超声功率、混合酶量(淀粉酶和木瓜蛋白酶比例为1:1)对PSDF得率的影响,结合正交试验优化提取工艺,并对西番莲果皮粉(Passion Peel Flour,PPF)和PSDF的理化性质进行分析。结果表明,超声辅助酶法提取PSDF最佳工艺条件为:料液比1:26 g/mL、酶解温度70℃、超声功率250 W、混合酶量0.6%,PSDF得率为14.82%。与PPF相比,PSDF溶胀性和持水力极显著增加了52.29%、19.66%(P<0.01);堆积密度显著下降了24.18%(P<0.05);饱和脂肪酸和不饱和脂肪酸结合力分别增加了1.97%、8.4%(P>0.05);模拟胃环境(pH=2.0)和肠道环境(pH=7.0)的胆固醇吸附能力分别显著增加了16.15%、10.47%(P<0.05)。红外光谱表明,PPF和PSDF均具有典型的多糖特征吸收峰。  相似文献   

5.
以胡麻渣为原料,通过酶法和碱法两种不同方法提取胡麻渣可溶性膳食纤维(soluble dietary fiber,SDF),并对两种方法提取到的SDF进行化学组成的测定、色泽的比较以及理化性质的测定。结果表明,碱法提取的SDF蛋白质、脂肪和可溶性多糖含量显著高于酶法(p0.05)。色泽上,碱法提取的SDF颜色较褐且暗沉,酶法颜色偏黄且明亮。碱法提取SDF的持水力、持油力、溶胀力均显著高于酶法(p0.05)。酶法提取SDF的阳离子交换能力显著高于碱法(p0.05)。研究结果可为胡麻渣的精深加工利用提供参考。  相似文献   

6.
膳食纤维(Dietary Fiber,DF)具有很多生理功能及突出的应用前景,而可溶性膳食纤维(Soluble Dietary Fiber,SDF)的生理特性要优于不溶性膳食纤维(Insoluble Dietary Fiber,IDF)。为提高油茶粕DF中SDF的得率,以SDF得率作为评价指标,采用超声辅助酶法,通过单因素实验对酶添加量、超声时间、超声功率、料液比四个因素进行研究,并在单因素实验的基础上进行响应面优化试验,并对得到的DF进行理化性质及结构分析。结果表明,最佳提取工艺为酶添加量0.2%、超声时间31 min、超声功率210 W、料液比1:23 g/mL,SDF得率为12.43%,此时IDF得率为68.39 %。油茶粕总膳食纤维(Total Dietary Fibre,TDF)的持水力为4.36 g/g、持油力为3.67 g/g、膨胀力为6.83 mL/g,胆固醇吸附率在pH2时为5.79 mg/g,pH7时为8.38 mg/g,葡萄糖吸附率为11.49 mg/g。通过结构表征的分析推测油茶粕TDF中含有木质素、纤维素、半纤维素及糖类物质,TDF表面疏松多孔、凹凸不平,粒径为50.699 nm。本研究提高了SDF得率,证明油茶粕TDF具有较好的理化性质及结构,为提高油茶粕的附加价值提供了参考。  相似文献   

7.
采用纤维素酶、木聚糖酶、纤维素-木聚糖复合酶分别对马铃薯渣膳食纤维进行改性,研究酶法改性对膳食纤维理化性质和单糖组分的影响。单糖测定结果表明,3种酶法改性后膳食纤维中均含有葡萄糖、半乳糖、半乳糖醛酸、阿拉伯糖、木糖5种单糖,但不同酶法改性膳食纤维各单糖含量有显著差异(p<0.05)。理化性质测定结果表明,不同酶法改性后膳食纤维的持水力、结合水力、溶解度强弱次序均为复合酶改性>木聚糖酶改性>纤维素酶改性;持油力和阳离子交换力的强弱次序均为复合酶改性>纤维素酶改性>木聚糖酶改性,复合酶改性后膳食纤维理化性质明显优于其他酶法改性。复合酶改性后膳食纤维持水力、持油力、结合水力、溶解度、阳离子交换力分别为6.29 g/g、2.89 g/g、5.99 g/g、32.28%、0.60 mL/g,与原膳食纤维相比较分别提高了115.22%、16.73%、27.18%、45.27%、173.18%。马铃薯渣膳食纤维改性前后均具有糖类特征官能团,在某些波长处出现相似吸收峰,吸收峰的强度和面积发生了改变。  相似文献   

8.
酶法提取麸皮膳食纤维的研究   总被引:2,自引:0,他引:2  
采用酶法依次分解植酸、水解蛋白质和淀粉的工艺所提取的麸皮膳食纤维纯度高、性能好。结果表明:淀粉水解的最佳条件为pH6.5,70℃,水解1.5h,α-淀粉酶的加量为1%;麸皮膳食纤维的含量为49.64%。其持水力分别为617.39%(20目)、589.89%(80目);持油力分别为159.78%(20目)、154.25%(80目);吸水膨胀力为13.5ml(80目)。  相似文献   

9.
椰子渣不溶性膳食纤维酶法提取   总被引:2,自引:0,他引:2  
李凤 《食品科学》2008,29(10):215
为提取椰子渣不溶性膳食纤维(insoluble dietary fiber,IDF,在测定椰子渣化学组成后经蛋白酶和脂肪酶分步酶解的单因素试验初步确定影响酶解各因素的适宜水平,在此基础上采用正交试验优化蛋白酶和脂肪酶一步酶解制备IDF的工艺条件,并测定产品的性能.结果表明,椰子渣含蛋白质14.80%、脂肪35.50%、膳食纤维22.30%以及其它碳水化合物20.85%:蛋白酶解适宜条件为:pH8.0~9.0、加酶量5.0%~6.0%、温度45~55℃,酶解4.0~5h;脂肪酶解适宜条件为:pH7.o~9.0、加酶量5.0%~6.0%、温度40~45℃、酶解4.0~5.Oh;一步酶解的适宜条件为pH8.5、48℃,酶用量5.5%、酶解3.5h,此条件下蛋白质、脂肪的去除率分别达到89.1%和83.6%:产品的持水率和膨胀率分别为3.25g/g和3.45ml/g,黏度为1.66mPa·s,产品纯度80.30%.因此椰子渣可经条件温和的一步酶解法制得较高纯度的IDF.  相似文献   

10.
为了优化蒜黄根膳食纤维提取工艺并分析提取的蒜黄根TDF理化性质,首先对酶解pH、酶解温度、酶解时间进行单因素实验;采用Box-Behnken试验设计,确定蒜黄根TDF提取的最佳工艺条件;最后对提取得到的蒜黄根TDF持水性、持油性、膨胀性、吸附葡萄糖和胆固醇能力以及抗氧化能力等理化性质进行分析。结果表明,蒜黄根TDF得率的最佳提取工艺条件为:酶解pH7.0、酶解温度62 ℃、酶解时间2.3 h。在最优条下蒜黄根TDF得率为72.47%±0.08%,与模型预测值72.59%基本一致。提取后的蒜黄根TDF持水性(8.63 g·g-1)、持油性(6.57 g·g-1)、膨胀性(6.27 mL·g-1)以及对葡萄糖和胆固醇的吸附能力(8.00 mg·g-1和10.52 mg·g-1)均显著高于蒜黄根粉(P<0.05)。然而蒜黄根TDF的抗氧化能力和总酚含量较蒜黄根粉显著降低(P<0.05)。因此,蒜黄根TDF可作为肉类和粮油类食品的优质添加剂,开发新型健康食品,提高蒜黄种植产业的资源利用率与产品附加值。  相似文献   

11.
白菜渣可溶性膳食纤维酸法提取工艺优化及理化性质测定   总被引:1,自引:0,他引:1  
任庆  孙波  于敬鑫  孙盛  孔庆敏 《食品科学》2015,36(10):70-75
以大白菜外叶为原料,采用酸法制备白菜渣可溶性膳食纤维(soluble dietary fiber,SDF)。以白菜渣SDF提取率为指标,在单因素试验的基础上,利用Box-Behnken试验设计结合响应面分析对提取工艺进行优化,得到的最优提取工艺参数为:盐酸浓度0.06 mol/L、料液比1∶25(g/mL)、提取温度90 ℃、提取时间90 min。在此工艺条件下,白菜渣SDF提取率达到了13.65%;化学组成分析结果表明,试样SDF含量为86.21%,含有部分蛋白质和灰分等杂质;白菜渣SDF外观呈淡米黄色粉末,扫描电镜观察到白菜渣SDF粉粒表面粗糙,进一步放大倍数后发现粗糙表面结构呈褶皱状,含有较多孔洞和孔隙;白菜渣SDF持水力和膨胀力分别为14.63 g/g和22.17 mL/g;乳化能力和乳化稳定性分别为48.78%、71.34%;吸附饱和脂肪酸、不饱和脂肪酸能力分别为2.23、1.94 g/g。以上功能性质测定结果表明,白菜渣SDF具有作为乳化剂和保健食品原料的潜力。  相似文献   

12.
高压蒸煮对豆渣膳食纤维理化特性及发酵性能影响   总被引:1,自引:0,他引:1  
以豆渣为原料提取膳食纤维,采用高压蒸煮方法处理,观察豆渣膳食纤维组成及理化性质(持水力、结合水力和膨胀性)变化情况.同时以高压蒸煮处理前后的豆渣膳食纤维为灌胃材料和发酵底物,做体内、体外发酵试验,测定粪便和发酵液中短链脂肪酸(SCFA)的含量,研究高压蒸煮处理对豆渣膳食纤维发酵特性的影响.结果发现:高压蒸煮处理30 min可显著提高豆渣纤维中水溶性膳食纤维含量,提高幅度达69.4%;高压蒸煮使豆渣膳食纤维的持水力和结合水力降低,但对膨胀性影响不大;体内发酵试验表明,与原豆渣膳食纤维相比,高压蒸煮豆渣膳食纤维可以显著提高小鼠粪便中的丙酸和丁酸含量;体外发酵试验表明,高压蒸煮处理有利于豆渣膳食纤维发酵产生乙酸和丙酸,但不利于丁酸的形成.体内体外发酵所产生短链脂肪酸的差异反映了体内体外发酵过程中微生物菌群的差异.  相似文献   

13.
利用莲藕加工的副产物藕渣为原料,在单因素实验的基础上采用响应面分析法优化藕渣不溶性膳食纤维(IDF)的提取工艺,并对其最优提取条件下得到的藕渣IDF的理化性质进行分析。结果表明,藕渣IDF最佳提取工艺条件:NaOH浓度0.60 mol/L、碱解时间90 min、热稳定α-淀粉酶酶解时间60 min、碱性蛋白酶添加量2%,此工艺条件下藕渣IDF得率29.90%±0.06%,藕渣IDF的纯度为91.93%±1.16%,持水性(6.58±0.25) g/g,持油性(4.73±0.33) g/g,膨胀性(3.03±0.12) mL/g;同时,藕渣IDF的亮度值(L*)为38.266±0.187,红度值(a*)为3.412±0.027,黄度值(b*)值为5.268±0.042。研究表明该法所制得的藕渣IDF得率、纯度较高,理化性质较好。  相似文献   

14.
以脱脂椰蓉为原料,采用响应面分析法建立酶-化学法提取可溶性膳食纤维得率的二次多项数学模型,并验证数学模型的有效性。探讨酶添加量、酶解时间、碱添加量、碱解时间因素对可溶性膳食纤维得率的影响,优化提取工艺参数,确定最佳提取工艺参数为混合酶添加量0.5%、酶解时间50?min、碱液(NaOH溶液)质量分数5%、碱解时间40?min,在此条件下椰蓉粕可溶性膳食纤维得率达11.78%,持水性、持油性和膨胀性分别为3.8?g/g、5.2?g/g和3.1?mL/g。红外光谱分析发现,脱脂椰蓉可溶性膳食纤维处于缔合状态的氢键较多;高效液相色谱结果表明,可溶性膳食纤维含有9?种单糖,其中甘露糖、氨基半乳糖、半乳糖、阿拉伯糖含量较高,分别为537.21、40.38、39.48?mg/L和15.83?mg/L。  相似文献   

15.
以普洱茶渣为原料,通过碱法提取茶渣中膳食纤维,研究影响因素(碱液浓度、碱解温度、碱解时间和料液比)对普洱茶渣中膳食纤维得率的影响。结合单因素和响应面试验得到最优提取工艺参数为碱液浓度3.35%、碱解温度100 ℃、碱解时间2.36 h、料液比1∶28(g/mL)。在该条件下,普洱茶渣中膳食纤维的得率为82.26%,较提取前极显著提高(P<0.001)。提取后的茶渣膳食纤维中纤维素、半纤维素、木质素和果胶的含量分别为52.10%、14.20%、15.30%和5.00%,以不溶性纤维为主。  相似文献   

16.
为充分开发山药皮的利用价值,以山药皮残渣为原料,通过正交试验,探究碱法提取山药皮残渣中可溶性膳食纤维(Soluble Dietary Fiber,SDF)的最佳提取工艺条件。利用X射线衍射(X-ray diffraction,XRD)图谱、傅里叶红外光谱(Fourier infrared spectroscopy,FT-IR)、扫描电镜(Scanning Electron Microscopy,SEM)对提取物进行表征,并对其膨胀率(Swelling Capacity,SC)、持水力(Water Holding Capacity,WHC)、持油力(Oil Holding Capacity,OHC)等理化性质进行测定。结果表明,碱法提取山药皮残渣SDF的最优工艺为提取时间90 min,NaOH浓度12 g/L,液固比40:1(mL:g),提取温度为80 ℃;在最优工艺下,山药皮残渣SDF得率为11.52%±0.23%;山药皮残渣SDF属于纤维素I型,其红外吸收峰呈现出典型的多糖吸收峰;SEM结果显示,山药皮残渣SDF是由多个细小颗粒团聚在一起而形成的疏松结构;与山药皮SDF相比,山药皮残渣SDF有着更好的膨胀率、持水力、持油力,分别为7.63±0.32 mL/g、9.81±0.21 g/g、4.45±0.24 g/g。综上,山药皮残渣SDF有着良好的理化性质,这使其有成为功能性食品中有效成分的潜在价值。  相似文献   

17.
采用超声波-微波协同法提取沙棘果皮渣中可溶性膳食纤维的工艺条件。通过单因素实验研究柠檬酸质量分数、料液比、微波功率、提取时间对沙棘果皮渣中可溶性膳食纤维提取得率的影响,进一步用Box-Behnken法优化沙棘果皮渣中可溶性膳食纤维最佳提取工艺。结果表明,在柠檬酸质量分数为3%,料液比1:16 g/mL,微波功率620 W,提取时间60 min的条件下,沙棘果皮渣中可溶性膳食纤维提取效果最佳,提取得率为11.07%±0.26%,与模型预测值10.83%误差为2.22%。制备的沙棘果皮渣可溶性膳食纤维持水力为8.02 g/g,持油力为4.19 g/g,膨胀力为3.82 mL/g。超声波-微波协同法是一种提取沙棘果皮渣中可溶性膳食纤维的有效方法。  相似文献   

18.
以苦杏仁皮为原料,选取NaOH溶液浓度、超声时间和超声温度为试验因素,采用响应面法优化苦杏仁皮中水不溶性膳食纤维的提取工艺,并对影响其持水性和溶胀性的因素进行研究。结果表明,苦杏仁皮中水不溶性膳食纤维提取的最佳工艺条件为NaOH溶液浓度0.70 mol/L、超声时间51 min、超声温度86 ℃,此时水不溶性膳食纤维提取率为49.73%。在研究范围内,其持水性和溶胀性受葡萄糖质量分数的影响较小,受酸碱度和超声温度的影响较为显著。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号