首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Parallel clustering algorithms   总被引:3,自引:0,他引:3  
Clustering techniques play an important role in exploratory pattern analysis, unsupervised learning and image segmentation applications. Many clustering algorithms, both partitional clustering and hierarchical clustering, require intensive computation, even for a modest number of patterns. This paper presents two parallel clustering algorithms. For a clustering problem with N = 2n patterns and M = 2m features, the time complexity of the traditional partitional clustering algorithm on a single processor computer is O(MNK), where K is the number of clusters. The proposed algorithm on anSIMD computer with MN processors has a time complexity O(K(n + m)). The time complexity of the proposed single-link hierarchical clustering algorithm is reduced from O(MN2) of the uniprocessor algorithm to O(nN) with MN processors.  相似文献   

2.
Some recent results claimed the existence of a class of algorithms for certain NP-complete problems, with running time O(n1g k 2n/2) and storage requirements O(k 2n/k), for 2 kn. In this note we show that those results do not hold, implying that an algorithm with time O(n 2n/2) and space O(2n/4) is still the best-known solution for such class of NP-complete problems.  相似文献   

3.
We substantially improve the known algorithms for approximating all the complex zeros of an nth degree polynomial p(x). Our new algorithms save both Boolean and arithmetic sequential time, versus the previous best algorithms of Schönhage [1], Pan [2], and Neff and Reif [3]. In parallel (NC) implementation, we dramatically decrease the number of processors, versus the parallel algorithm of Neff [4], which was the only NC algorithm known for this problem so far. Specifically, under the simple normalization assumption that the variable x has been scaled so as to confine the zeros of p(x) to the unit disc x : |x| ≤ 1, our algorithms (which promise to be practically effective) approximate all the zeros of p(x) within the absolute error bound 2b, by using order of n arithmetic operations and order of (b + n)n2 Boolean (bitwise) operations (in both cases up to within polylogarithmic factors). The algorithms allow their optimal (work preserving) NC parallelization, so that they can be implemented by using polylogarithmic time and the orders of n arithmetic processors or (b + n)n2 Boolean processors. All the cited bounds on the computational complexity are within polylogarithmic factors from the optimum (in terms of n and b) under both arithmetic and Boolean models of computation (in the Boolean case, under the additional (realistic) assumption that n = O(b)).  相似文献   

4.
This paper presents an efficient algorithm for enumerating all minimal a-b separators separating given non-adjacent vertices a and b in an undirected connected simple graph G = (V, E), Our algorithm requires O(n3Rab) time, which improves the known result of O(n4Rab) time for solving this problem, where ¦V¦= n and Rab is the number of minimal a-b separators. The algorithm can be generalized for enumerating all minimal A-B separators that separate non-adjacent vertex sets A, B < V, and it requires O(n2(nnAnb)RAB) time in this case, where na = ¦A¦, nB = ¦B¦ and rAB is the number of all minimal AB separators. Using the algorithm above as a routine, an efficient algorithm for enumerating all minimal separators of G separating G into at least two connected components is constructed. The algorithm runs in time O(n3R+Σ + n4RΣ), which improves the known result of O(n6RΣ) time, where Rσ is the number of all minimal separators of G and RΣR+Σ = ∑1i, vj) ERvivj n − 1)/2 − m)RΣ. Efficient parallelization of these algorithms is also discussed. It is shown that the first algorithm requires at most O((n/log n)Rab) time and the second one runs in time O((n/log n)R+Σ+n log nRΣ) on a CREW PRAM with O(n3) processors.  相似文献   

5.
An ordered binary decision diagram (OBDD) is a graph representation of a Boolean function. In this paper, the size of ordered binary decision diagrams representing threshold functions is discussed. We consider two cases: the case when a variable ordering is given and the case when it is adaptively chosen. We show 1) O(2n/2) upper bound for both cases, 2) Ω(2n/2) lower bound for the former case and 3) Ω(n2n/2) lower bound for the latter case. We also show some relations between the variable ordering and the size of OBDDs representing threshold functions.  相似文献   

6.
Our approach combines the method of inexact steepest descent with the method of contractor directions to obtain an algorithm for solving systems of linear equations. In order to enhance the scope of applicability, we consider an iterative method with variable step-size iterations. We prove the convergence and given an error estimate for our method.

The algorithm is well-suited for parallel computation. In fact, for systems with m equations and n unknowns, each iteration may be computed in parallel time O(log m + log n), on an EREW PRAM with O(mn) processors.  相似文献   


7.
An on-line parser processes each word as soon as it is typed by the user, without waiting for the end of the sentence. Thus, in an interactive system, a sentence will be parsed almost immediately after the last word has been presented.

The complexity of an on-line parser is determined by the resources needed for the analysis of a single word, as it is assumed that previous words have been processed already. Sequential parsing algorithms like CYK or Earley need O(n2) time for the nth word. A parallel implementation in O(n) time on O(n) processors is straightforward. In this paper a novel parallel on-line parser is presented that needs O(1) time on O(n2) processors.  相似文献   


8.
We compare five implementations of the Jacobi method for diagonalizing a symmetric matrix. Two of these, the classical Jacobi and sequential sweep Jacobi, have been used on sequential processors. The third method, the parallel sweep Jacobi, has been proposed as the method of choice for parallel processors. The fourth and fifth methods are believed to be new. They are similar to the parallel sweep method but use different schemes for selecting the rotations.

The classical Jacobi method is known to take O(n4) time to diagonalize a matrix of order n. We find that the parallel sweep Jacobi run on one processor is about as fast as the sequential sweep Jacobi. Both of these methods take O(n3 log2n) time. One of our new methods also takes O(n3 log2n) time, but the other one takes only O(n3) time. The choice among the methods for parallel processors depends on the degree of parallelism possible in the hardware. The time required to diagonalize a matrix on a variety of architectures is modeled.

Unfortunately for proponents of the Jacobi method, we find that the sequential QR method is always faster than the Jacobi method. The QR method is faster even for matrices that are nearly diagonal. If we perform the reduction to tridiagonal form in parallel, the QR method will be faster even on highly parallel systems.  相似文献   


9.
Stphane 《Pattern recognition》1995,28(12):1993-2000
We propose a parallel thinning algorithm for binary pictures. Given an N × N binary image including an object, our algorithm computes in O(N2) the skeleton of the object, using a pyramidal decomposition of the picture. The behavior of this algorithm is studied considering a family of digitalization of the same object at a different level of resolution. With the Exclusive Read Exclusive Write (EREW) Parallel Random Access Machine (PRAM), our algorithm runs in O(log N) time using O(N2/logN) processors and it is work-optimal. The same result is obtained with high-connectivity distributed memory SIMD machines having strong hypercube and pyramid. We describe the basic operator, the pyramidal algorithm and some experimental results on the SIMD MasPar parallel machine.  相似文献   

10.
The problem of planning a path for a point robot from a source point s to a destination point d so as to avoid a set of polygonal obstacles in plane is considered. Using well-known methods, a shortest path from s to d can be computed with a time complexity of O(n2) where n is the total number of obstacle vertices. The focus here is in

1. (a) planning paths faster at the expense of setting for suboptimal path lengths and

2. (b) performance analysis of simple and/or well-known suboptimal methods.

A method that enables a hierarchical implementation of any path planning algorithm with no increase in the worst-case time complexity, is presented; this implementation enables fast planning of simple paths. Then methods are presented based on the Voronoi diagrams, trapezoidal decomposition and triangulation, which compute (suboptimal) paths in O(nlog n) time with the preprocessing costs of O(n log n), O(n2) and O(n log n), respectively. Using existing navigational algorithms for unknown terrains, algorithms that run in O(n log n) time (after preprocessing) and yield suboptimal paths, are presented. For all these algorithms, upper bounds on the path lengths are estimated in terms of the shortest of the obstacles, etc.  相似文献   


11.
Steven L. 《Pattern recognition》1995,28(12):1965-1972
Two fast algorithms for median filtering of images using parallel computers having 2-D mesh interconnections are given. Both algorithms assume that an n × n image is loaded onto the mesh with one processing element per pixel. One algorithm performs median filtering over d × d neighborhoods in O(d2) time and works with pixel values in an arbitrarily large range. This algorithm, while theoretically suboptimal, achieves a lower constant than a previously published asymptotically—optimal algorithm and is simpler to program. The second algorithm assumes that the range of pixel values is limited and relatively small, and it accomplishes median filtering in O(d) time.  相似文献   

12.
We present four polynomial space and exponential time algorithms for variants of the E S problem. First, an O(1.1120n) (where n is the number of variables) time algorithm for the NP-complete decision problem of E 3-S , and then an O(1.1907n) time algorithm for the general decision problem of E S . The best previous algorithms run in O(1.1193n) and O(1.2299n) time, respectively. For the #P-complete problem of counting the number of models for E 3-S we present an O(1.1487n) time algorithm. We also present an O(1.2190n) time algorithm for the general problem of counting the number of models for E S ; presenting a simple reduction, we show how this algorithm can be used for computing the permanent of a 0/1 matrix.  相似文献   

13.
Nested dissection is a very popular direct method for solving sparse linear systems that arise from finite difference and finite element methods. Worley and Schreiber [16] give a fine grain algorithm for a square array of processors. Their algorithm uses O(N2) processors, each with O(N) memory, to factor an N2 by N2 sparse matrix whose graphs is an N × N mesh. The efficiency of their method is between 1/46 and 1/12. George et al. [6] [8] give a medium grain algorithm for hypercube architecture, while George et al. [7] give an algorithm for shared memory machines. These papers present a column oriented approach which can exploit O(N) parallelism and yield efficiencies up to 50%. Lucas [11] also gives a column oriented scheme which achieves up to 75% efficiency and O(N) parallelism. In this paper, we present a medium to fine grain algorithm for a P × P array of processors with local memory. This algorithm can exploit up to O(N2) parallelism. The efficiency of the fine grain version is comparable to [16] while as a medium grain algorithm achieves about 49% efficiency. The strength of the method is due to three factors: its ability to pipeline much of the computation, overlapping computation and communication, and the use of level 3 BLAS like primitives. In addition to its high efficiency its memory requirement is optimal, only O(N2 log N/P2) words memory is needed per processor.  相似文献   

14.
A fast algorithm is given for the all-pairs shortest paths problem for banded matrices having band-width b. It solves the negative-cycle problem and calculates all path lengths within the band in O(nb2) time and calculates all other path lengths in O(n2b) time.  相似文献   

15.
Two parallel algorithms for finding minimum spanning forest (MSF) of a weighted undirected graph on hypercube computers, consisting of a fixed number of processors, are presented. One algorithm is suited for sparse graphs, the other for dense graphs. Our design strategy is based on successive elimination of non-MSF edges. The input graph is partitioned equally among different processors, which then repeatedly eliminate non-MSF edges and merge results to gradually construct the desired MSF of the entire graph. Low communication overhead is achieved by restricting the message-flow to between the neighboring processors in the hypercube topology. The correctness of our approach is due to a theorem which states that with total-ordered edges, if an edge of an arbitrary subgraph does not belong to its MSF, then it does not belong to the MSF of the entire graph. For a graph of n vertices and m edges, our first algorithm finds an MSF in O(m log m)/p) time using p processors for p ≤ (mlog m)/n(1+log(m/n)). The second algorithm, efficient for dense graphs, requires O(n2/p) time for pn/log n.  相似文献   

16.
In this paper, we derive time-minimal systolic arrays for Gaussian elimination and the Algebraic Path Problem (APP) that use a minimal number of processors. For a problem of size n, we obtain an execution time T(n) = 3n −1 using A(n) = n2/4+O(n) processors for Gaussian elimination, and T(n) = 5n −2 and A(n) = n3/+O(n) for the APP.  相似文献   

17.
In this paper we consider the unbounded single machine parallel batch scheduling problem with family jobs and release dates to minimize makespan. We show that this problem is strongly NP-hard, and give an O(n(n/m+1)m) time dynamic programming algorithm and an O(mkk+1P2k−1) time dynamic programming algorithm, where n is the number of jobs, m is the number of families, k is the number of distinct release dates and P is the sum of the processing times of all families. We further give a heuristic with a performance ratio 2. We also give a polynomial-time approximation scheme for the problem.  相似文献   

18.
We first show how to transform the solution of an n × n tridiagonal system into suffix computations of continued fractions. Then a parallel substitution scheme is introduced to compute the suffix values. The derived parallel algorithm allows the tridiagonal system to be solved in O(log n) time on an unshuffle network with Θ(n /log n) processors. It is cost-optimal in the sense that processor number times execution time is minimized. Our solver is conceptually simple and easy for implementation.  相似文献   

19.
尤洁  李劲    张赛  李婷 《智能系统学报》2019,14(4):761-768
针对已有链路预测算法复杂度高,不适于在大规模图上进行链接预测的问题,本文基于图勾勒近似技术对已有链路预测方法进行优化,提出了基于图勾勒的链路预测方法。该方法将链路预测算法的计算复杂度由On3)降低至On2k2log2n)。为进一步提高链接预测效率,给出了基于Spark的并行化链路预测实现方法。在真实图数据集上进行测试,实验结果表明本文方法在保证链接预测精度的前提下,可有效提升算法效率。  相似文献   

20.
We present a parallel recognition algorithm for bipartite-permutation graphs. The algorithm can be executed in O(log n) time on the CRCW PRAM if O(n3/log n) processors are used, or O(log2 n) time on the CREW PRAM if O(n3/log2 n) processors are used. Chen and Yesha (1993) have presented another CRCW PRAM algorithm that takes O(log2n) time if O(n 3) processors are used. Compared with Chen and Yesha's algorithm, our algorithm requires either less time and fewer processors on the same machine model, or fewer processors on a weaker machine model. Our algorithm can also be applied to determine if two bipartite-permutation graphs are isomorphic  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号