首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
The CMOS integration of dual work function (WF) phase-controlled Ni fully silicided (FUSI) gates on HfSiON was investigated. For the first time, the integration of NiSi FUSI gates on n-channel MOS (NMOS) and Ni31Si12 FUSI gates on p-channel MOS (PMOS) with good Vt control to short gate lengths (LG=50 nm, linear Vt of 0.49 V for NMOS, and -0.37 V for PMOS) is demonstrated. A poly-Si etch-back step was used to reduce the poly-Si height on PMOS devices, allowing for the linewidth-independent formation of NiSi on NMOS and Ni-rich silicides on PMOS with a two-step rapid thermal processing (RTP) silicidation process. The process space for the scalable formation of NiSi on NMOS and Ni2Si or Ni31 Si12 on PMOS devices was investigated. It was found that within the process window for linewidth-independent NiSi FUSI formation on 100-nm poly-Si NMOS devices, it is possible to control the silicide formation on PMOS devices by adjusting the poly-Si etch-back and RTP1 conditions to obtain either Ni2Si or Ni31Si12 FUSI gates. A reduction in the PMOS threshold voltage of 90 mV and improved device performance (18% Ion improvement at Ioff=100 nA/mum) was obtained for Ni 31Si12 compared to Ni2Si FUSI gates, as well as a Vt reduction of 350 mV when compared to a single WF flow using NiSi FUSI gates on PMOS  相似文献   

2.
This paper reports the influences of uniaxial mechanical stress on the reverse-biased source/drain to substrate junction leakage of state-of-the-art 65 nm CMOS transistors. For n-channel metal-oxide-semiconductor (NMOS) transistors, the band-to-band tunneling (BTBT) dominates the junction leakage current due to heavily doped junction and pocket implants. However, for p-channel metal-oxide-semiconductor (PMOS) transistors with embedded SiGe source/drain, the leakage current is found to result from both BTBT and generation current due to defects generated in the SiGe layer and at the SiGe/Si interface. A four-point bending technique is used to apply mechanical uniaxial stress on NMOS and PMOS devices along the longitudinal direction. It was found that the leakage current of both devices increases (decreases) with applied uniaxial compressive (tensile) stress, and that the strain sensitivity of the junction leakage of NMOS transistors is much weaker than that of PMOS transistors. By combining the bending technique with process strained Si (PSS) technology, additional stress was applied to NMOS and PMOS with high built-in stress to investigate the characteristics of junction leakage under extremely high uniaxial stress. It is shown that uniaxial tensile stress can both enhance the NMOS device performance and decrease the junction leakage. However, for the PMOS, there exists a tradeoff between boosting the transistor performance and decreasing the junction leakage current, so there is a limit in the amount of compressive stress that can be beneficially applied.  相似文献   

3.
仲崇慧  于晓权 《微电子学》2021,51(1):121-125
对深亚微米NMOS和PMOS管进行了60Co γ总剂量辐射实验.实验结果表明,PMOS管在转移特性、噪声、匹配特性方面比NMOS管的抗辐照能力更强.对NMOS管和PMOS管的辐照损伤机理进行了理论分析.分析结果表明,不同的衬底类型导致了PMOS管和NMOS管的辐照效应的差异.基于实验与分析结果,提出了一些深亚微米模拟I...  相似文献   

4.
采用不同硅化工艺制备了NiSi薄膜并用剖面透射电镜(XTEM)对样品的NiSi/Si界面进行了研究.在未掺杂和掺杂(包括As和B)的硅衬底上通过物理溅射淀积Ni薄膜,经快速热处理过程(RTP)完成硅化反应.X射线衍射和喇曼散射谱分析表明在各种样品中都形成了NiSi.还研究了硅衬底掺杂和退火过程对NiSi/Si界面的影响.研究表明:使用一步RTP形成NiSi的硅化工艺,在未掺杂和掺As的硅衬底上,NiSi/Si界面较粗糙;而使用两步RTP形成NiSi所对应的NiSi/Si界面要比一步RTP的平坦得多.高分辨率XTEM分析表明,在所有样品中都形成了沿衬底硅〈111〉方向的轴延-NiSi薄膜中的一些特定晶面与衬底硅中的(111)面对准生长.同时讨论了轴延中的晶面失配问题.  相似文献   

5.
To create a nickel-monosilicide (NiSi) film with superior electrical properties, two-step rapid thermal annealing (RTA) was optimized. Using in situ chemical dry cleaning and increasing initial RTA temperature makes it possible to macroscopically transform nickel into NiSi without causing oxygen contamination. Nevertheless, di-nickel silicide (Ni$_{2}$Si) remaining on the top surface of NiSi on ${rm p}^{+}$-doped gate degrades the electrical properties of the NiSi film. This top-surface Ni $_{2}$Si is formed by decomposition of NiSi by conventional second RTA and appears as a disconnection of the NiSi film on the logic test device or agglomeration of silicon and nickel on the blanket NiSi film with activation energy of 2.92 eV. Using “spike RTA” with higher temperature suppresses the decomposition of NiSi and activates transformation of Ni$_{2}$ Si to NiSi. It is concluded that the proposed two-step RTA significantly improves the uniformity of the electrical properties of NiSi in 65-nm-node logic devices.   相似文献   

6.
The merging of halo implants from the drain side and the source side creates a maximum in the magnitude of the threshold voltage and thus a minimum in the off-current in the metal-oxide-semiconductor transistors. This paper demonstrates that the halo implant from the drain side can cross-over to the source side and vice versa for the look-ahead transistor test structures (transistor test structures with gate length smaller than that of the target transistor). The phenomenon of the cross-over of halo implant is more readily observed in PMOS transistors compared to NMOS transistors because for the same mask gate length, the effective channel length of PMOS transistor tends to be smaller than that of NMOS transistor. The advantage of the cross-over of halo implants can be understood as follows. Since the hole mobility is smaller than the electron mobility in silicon, PMOS transistor tends to have smaller on-current (Ion) than NMOS transistor. The on-current can be increased by using PMOS transistor with smaller mask gate length compared to the NMOS transistor. However, this approach will make the PMOS transistor very sensitive to the statistical variation in the gate electrode length during manufacturing. By making use of the above reported phenomenon, PMOS transistor can be made shorter without running into manufacturing control problem, resulting in bigger Ion but the penalty is that the Ioff will become significantly higher.  相似文献   

7.
采用不同硅化工艺制备了NiSi薄膜并用剖面透射电镜(XTEM)对样品的NiSi/Si界面进行了研究.在未掺杂和掺杂(包括As和B)的硅衬底上通过物理溅射淀积Ni薄膜,经快速热处理过程(RTP)完成硅化反应.X射线衍射和喇曼散射谱分析表明在各种样品中都形成了NiSi.还研究了硅衬底掺杂和退火过程对NiSi/Si界面的影响.研究表明:使用一步RTP形成NiSi的硅化工艺,在未掺杂和掺As的硅衬底上,NiSi/Si界面较粗糙;而使用两步RTP形成NiSi所对应的NiSi/Si界面要比一步RTP的平坦得多.高分辨率XTEM分析表明,在所有样品中都形成了沿衬底硅〈111〉方向的轴延-NiSi薄膜中的一些特定晶面与衬底硅中的(111)面对准生长.同时讨论了轴延中的晶面失配问题.  相似文献   

8.
The impact of device type and sizing on phase noise mechanisms   总被引:7,自引:0,他引:7  
Phase noise mechanisms in integrated LC voltage-controlled oscillators (VCOs) using MOS transistors are investigated. The degradation in phase noise due to low-frequency bias noise is shown to be a function of AM-PM conversion in the MOS switching transistors. By exploiting this dependence, bias noise contributions to phase noise are minimized through MOS device sizing rather than through filtering. NMOS and PMOS VCO designs are compared in terms of thermal noise. Short-channel MOS considerations explain why 0.18-/spl mu/m PMOS devices can attain better phase noise than 0.18-/spl mu/m NMOS devices in the 1/f/sup 2/ region. Phase noise in the 1/f/sup 3/ region is primarily dependent upon the upconversion of flicker noise from the MOS switching transistors rather than from the bias circuit, and can be improved by decreasing MOS switching device size. Measured results on an experimental set of VCOs confirm the dependencies predicted by analysis. A 5.3-GHz all-PMOS VCO topology demonstrates measured phase noise of -124 dBc/Hz at 1-MHz offset and -100dBc/Hz at 100-kHz offset while dissipating 13.5 mW from a 1.8-V supply using a 0.18-/spl mu/m SiGe BiCMOS process.  相似文献   

9.
10.
A sensing scheme in which the bit line is precharged to half V/SUB DD/ is introduced for CMOS DRAMs. The proposed circuitry uses a PMOS memory array and incorporates the following features: (1) a complementary sense amplifier consisting of NMOS and PMOS cross-coupled pairs; (2) clocked pulldown of the latching node; (3) complementary clocking of the PMOS pullup; (4) full-sized dummy cell generation of reference potential for sensing; (5) shorting transistor to equalize precharge potential of bit lines; and (6) depletion NMOS decoupling transistors for multiplexing bit lines. The study shows that the half-V/SUB DD/ bit-line sensing scheme has several unique advantages, especially for high-performance high-density CMOS DRAMs, which compared to the full-V/SUB DD/ bit-line sensing scheme used for NMOS memory arrays or the grounded bit-line sensing scheme for PMOS arrays in CMOS DRAMs.  相似文献   

11.
The device degradation of dual-polycide-gate N+/P+ CMOS polycide transistors due to the lateral diffusion of dopants in the silicides is studied using a coupled 2-D process and device simulator. Design rule spacings between the NMOS and the PMOS transistor are given for various NMOS:PMOS gate area ratios and thermal processing conditions. The simulations show that contrary to previous findings, micrometer and submicrometer spacings are possible for certain silicide technologies using low-temperature or short higher-temperature furnace steps. Simulations show that CoSi2 and TiSi2 appear to be better candidates for submicrometer dual-gate applications than WSi2  相似文献   

12.
Large array devices (LAD) of MOSFETs are needed in most power ICs. NMOS transistors are used in current sinking while PMOS in current driving. Unlike the NMOS transistors, the high voltage PMOS transistors (HVPMOS) electrostatic discharge (ESD) self-protection of LAD for higher than 30 V applications are less extensively studied. In this paper, the device level improvements of the 60 V HVPMOS LAD of a 0.25 μm BCD process is studied to obtain good ESD protection margins. The effects of device and layout optimization guidelines are also examined. Furthermore, the developed approach is shown to be a low cost general solution for the HVPMOS LAD with poor ESD self-protection capability in a 0.25 μm BCD process.  相似文献   

13.
袁庆洪  蒋志 《微电子学》2002,32(3):175-177
研究了在LPLV CMOS工艺中,用表面沟PMOS管工艺使NMOS管的阈值电压发生偏移的问题。在使用表面沟PMOS管的LPLV CMOM工艺中,NMOS管的多晶栅中的杂质不能达到均匀的分布,导致阈值电压发生偏移。文章提出了三个解决方案,并对其可行性进行了研究。  相似文献   

14.
An experimental investigation of the effects of high temperature on short channel NMOS and PMOS transistors in 6H-SiC is reported. Punchthrough characteristics are presented and examined at room temperature and 300°C. The punchthrough current increases dramatically for scaled PMOS transistors at high temperature while the temperature dependence of electrical characteristics for short channel NMOS is small. The results presented in this paper also provide insight into design criteria for short channel silicon carbide (SiC) devices intended for operation at elevated temperatures  相似文献   

15.
尚海平  徐秋霞 《半导体学报》2009,30(9):096002-3
A two-step process of Ni silicide formed on bulk silicon, and the effects of different process conditions, including two-step RTA temperature and time, selective etching, and process protective nitrogen gas on the properties of the Ni silicide film have been studied. In particular, the experiments show that the quality of NiSi film is very sensitive to the process conditions of the first RTA. The experiments also show that the quality of the film is very sensitive to the flow of protective nitrogen gas. The corresponding mechanisms are discussed.  相似文献   

16.
Noise measurements of the 1/f noise in PMOS and NMOS transistors for analog applications are reported under wide bias conditions ranging from subthreshold to saturation. Two “low noise” CMOS processes of 2 μm and 0.5 μm technologies are compared and it is found that the more advanced process, with 0.5 μm technology, exhibits significantly reduced 1/f noise, due to optimized processing. The input referred noise and the power spectral density (PSD) of the drain current 1/f noise are modeled in saturation as well as in subthreshold and are compared with the common empirical approaches such as the SPICE models. The results of this study are useful to the design and modeling of 1/f noise of CMOS analog circuits  相似文献   

17.
The threshold voltage sensitivity, of fully depleted SOI MOSFET's to variations in SOI silicon film thickness was examined through both simulation and device experiments. The concept of designing the channel Vth implant to achieve a constant dose within the film, rather than a constant doping concentration, was studied for a given range of film thicknesses. Minimizing the variation in retained dose reduced the threshold voltage sensitivity to film thickness for the range of tsi examined. One-dimensional process simulations were performed to determine the optimal channel implant condition that would reduce the variation in retained dose using realistic process parameters for both NMOS and PMOS device processes. SOI NMOS transistors were fabricated. The experimental results confirmed the simulation findings and achieved a reduced threshold voltage sensitivity  相似文献   

18.
Both electrical and optical reliabilities of PMOS and NMOS tunneling diodes are enhanced by oxide roughness, prepared by very high vacuum prebake technology. For rough PMOS devices, as compared to flat PMOS devices, the Weibull plot of TBD shows a 2.5-fold enhancement at 63% failure rate, while both the D2 and H2-treated flat PMOS devices show similar inferior reliability. For rough NMOS devices, as compared to flat NMOS devices, the Weibull plot of TBD shows a 4.9-fold enhancement at 63% failure rate. The time evolutions of the light emission from rough PMOS and NMOS diodes degrade much less than those of flat PMOS and NMOS diodes. The momentum reduction perpendicular to the Si/SiO2 interface by roughness scattering could possibly make it difficult to form defects in the bulk oxide and at the Si/SiO2 interface by the impact of the energetic electrons and holes  相似文献   

19.
This paper shows for the first time the high-performances of a partially depleted 0.18-μm technology at low supply voltage. The SOI technology uses a standard digital process with a TiSi 2 salicided polysilicon gate and a low dose SIMOX substrate. The process does not include any specific feature like T-gate, or high-resistivity SOI substrate. At 1 V, and 2 GHz the current gain and the unilateral power gain are higher than 15 dB for both 0.18 μm gate length NMOS and PMOS transistors. At 1.5 V, the 0.18-μm NMOS and PMOS show a transition frequency of, respectively, 51 GHz and 23 GHz and a maximum oscillation frequency of 28 GHz and 13 GHz. These results have been obtained with an optimized transistor geometry to reduce the influence of the access resistances. The high-frequency potential of this 0.18-μm SOI technology demonstrates the possible integration of microwave functions with digital circuits on a single chip for low-power, low-voltage applications like wireless telecommunication  相似文献   

20.
A high-speed small-area DRAM sense amplifier with a threshold-voltage (VT) mismatch compensation function is proposed. This sense amplifier features a novel hierarchical data-line architecture with a direct sensing scheme that uses only NMOS transistors in the array, and simple VT mismatch compensation circuitry using a pair of NMOS switching transistors. The layout area of the sense amplifier is reduced to 70% of that of a conventional CMOS common I/O sense amplifier due to the removal of PMOS transistors from the array. The readout time is improved to 35% of that of a conventional CMOS sense amplifier because of direct sensing and a 1/10 reduction in VT mismatch. This sense amplifier eliminates the sensitivity degradation and the area overhead increase that are expected in gigabit-scale DRAM arrays  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号