共查询到15条相似文献,搜索用时 62 毫秒
1.
2.
3.
基于滑—停—滑机理的锯齿形切屑高速成形分析 总被引:1,自引:2,他引:1
高速车削时被切削材料以极高的应变速率产生连续的塑性变形,产生大量的切削热,在出现集中剪切滑移的情况下,产生了连续型带状锯齿形切屑。根据高速外圆车削中碳淬硬钢切屑试样的SEM照片和金相显微组织照片分析了锯齿形切屑周期性形成的变形机理。被切削材料的变形过程由普通的剪切滑移变形和集中剪切滑移变形组成,切屑沿前刀面的流出可细分为“滑—停—(再)滑”三个阶段。切削速度和材料硬度是决定切屑变形的两个主要影响因素。只要能够使材料应变率增加、致使切削温度升高的因素改变达到某种临界状态都能促成锯齿形切屑的形成,锯齿形切屑的形态随着切削用量的改变而变化。 相似文献
4.
5.
高速切削中锯齿形切屑的研究 总被引:1,自引:0,他引:1
高速切削技术是先进制造技术,是以高切削速度、高进给速度和高加工精度为主要特性加工技术。对于不同的切削材料和不同的金属特性,在高速切削中可以看到两种不同的切屑形式,它们分别是稳定状态的连续型切屑和周期剪切型切屑(锯齿形切屑)。稳定状态的连续型切屑中含有集中剪应力,该集中剪应力产生于穿过剪切区发生塑性流动的被切金属中,并且当被切金属以切屑形式离开剪切区后,就不再发生更多的塑性变形。随着切削速度的不断提高,在某一个临界切削速度下切屑会由连续型切屑向锯齿形切屑转变。一般来说,以高切削速度、高进给量对工件… 相似文献
6.
7.
8.
9.
10.
根据对具有绝热剪切带的锯齿形切屑形成过程的分析,提出一种基于切屑显微测量的计算方法。利用该方法研究了两种回火硬度的30CrNi3MoV高强度钢在正交切削过程中形成的锯齿形切屑内第一变形区的变形和温度,并讨论了切削速度和回火硬度对它们的影响。 相似文献
11.
高速切削过程绝热剪切局部化断裂预测 总被引:1,自引:0,他引:1
基于高速切削过程绝热剪切饱和极限理论,结合锯齿形切屑绝热剪切带的变形和受力条件,以及材料的动态塑性本构关系,建立以切削速度、切削厚度和刀具前角为预测变量的高速切削过程绝热剪切局部化断裂的预测模型,并以淬硬45钢和FV520(B)不锈钢为例,预测其发生绝热剪切局部化断裂的临界切削条件。通过高速切削试验和金相试验,讨论了切削条件对绝热剪切局部化断裂过程的影响规律和敏感程度,验证了绝热剪切局部化断裂的预测结果。结果表明:较大切削厚度和较小刀具前角会降低绝热剪切局部化断裂的临界切削速度,建立的绝热剪切局部化断裂预测模型能有效预测切屑发生绝热剪切局部化断裂的临界切削条件。 相似文献
12.
基于ABAQUS分析了高速切削过程中锯齿形切屑的形成机理和影响切屑锯齿化程度的主要因素,选取不同切削速度和刀具前角进行切屑形成过程模拟和测试。结果表明,随着切削速度的增加以及刀具前角的减小,切屑的锯齿化程度随之增大。 相似文献
13.
高速切削过程绝热剪切局部化断裂的特性试验 总被引:3,自引:0,他引:3
高速切削过程中绝热剪切局部化断裂的发生是第一变形区绝热剪切演化的结果。研制了高速车削刀-屑快速分离装置,对切屑根部试样进行金相显微观察,探讨绝热剪切局部化断裂的速率相关特性,建立绝热剪切局部化断裂过程的物理模型。结果表明,高速切削过程的绝热剪切演化随切削速度的提高主要经历了绝热剪切的发生、形变带、转变带和绝热剪切局部化断裂。绝热剪切局部化断裂是第一变形区能量聚集和释放的周期性循环过程,随着剪切带能量的不断聚集,当剪切带所能承受的能量达到饱和极限时,剪切带就会以断裂的形式释放能量,结果导致锯齿形切屑沿剪切带完全分离。 相似文献
14.
应用Hopkinson压杆实验装置,确定了航空用钛合金Ti6Al4V高应变和高温条件下的应力-应变关系,结合Ti6Al4V合金准静态试验数据,建立了适合高速切削仿真的Johnson-Cook本构模型;通过有限元数值模拟,仿真了高速切削Ti6Al4V合金的锯齿状切屑形成过程,分析了整个锯齿状切屑形成过程的切削力、切削温度、等效塑性应变的变化,深入探讨了锯齿状切屑的形成机理;将模拟计算得到的切削力和切削温度与试验结果进行了比较,两者具有较好的一致性。
相似文献
相似文献
15.
根据霍普金森压杆试验数据拟合得到Johnson-Cook本构模型中的参数,基于Abaqus/Explicit的J-C材料本构模型模拟高速正交切削QAl9-4,仿真分析了切削速度、切削厚度、刀具前角等切削参数对切屑锯齿化程度的影响。研究结果表明:切屑的锯齿化程度随切削速度的增加而增大,随着切削厚度的增大而增大,随着刀具前角的减小而增大。研究结果可为优化切削参数提供参考依据。 相似文献