首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The catalytic dechlorination of 2,4-dichlorophenol (2,4-DCP) by Ni/Fe bimetallic nanoparticles in the presence of humic acid (HA) was investigated in order to understand their applicability for in situ remediation of groundwater. 2,4-DCP was catalytically dechlorinated to form the final products – phenol (P) via two intermediates, o-chlorophenol (o-CP) and p-chlorophenol (p-CP). It was demonstrated that the carbon mass balances during the dechlorination were between 84% and 92%, and other carbons were adsorbed on the surface of Ni/Fe bimetallic nanoparticles. The experimental results suggest that HA competed for reaction sites on the Ni/Fe bimetallic nanoparticles with 2,4-DCP, and thus reduced the efficiency and rate of the dechlorination of 2,4-DCP. The catalytic degradation slowed down as the increase of HA in solution, and when HA's concentrations were 0, 10, 20 and 30?mg?L?1, the maximum concentrations of o-CP were 0.025, 0.041, 0.039 and 0.034?mM in 10, 30, 30 and 30?min, respectively. High Ni content, low initial pH value, high Ni/Fe nanoparticles’ dosage and high temperature favoured the catalytic dechlorination of 2,4-DCP. The experimental results show that no other intermediates were generated besides Cl?, o-CP, p-CP and P during the catalytic dechlorination of 2,4-DCP.  相似文献   

2.
Dechlorination of chlorinated methanes by Pd/Fe bimetallic nanoparticles   总被引:8,自引:0,他引:8  
This paper examined the potential of using Pd/Fe bimetallic nanoparticles to dechlorinate chlorinated methanes including dichloromethane (DCM), chloroform (CF) and carbon tetrachloride (CT). Pd/Fe bimetallic nanoparticles were prepared by chemical precipitation method in liquid phase and characterized in terms of specific surface area (BET), size (TEM), morphology (SEM), and structural feature (XRD). With diameters on the order of 30-50 nm, the Pd/Fe bimetallic nanoparticles presented obvious activity, and were suited to efficient catalytic dechlorination of chlorinated methanes. The effects of some important reaction parameters, such as Pd loading (weight ratio of Pd to Fe), Pd/Fe addition (Pd/Fe bimetallic nanoparticles to solution ratio) and initial pH value, on dechlorination efficiency were sequentially studied. It was found that the maximum dechlorination efficiency was obtained for 0.2 wt% Pd loading. The dechlorination efficiency was observed to increase with increasing Pd/Fe addition. The optimal pH value for dechlorination reaction of chlorinated methanes was about 7. Kinetics of chlorinated methane dechlorination in the catalytic reductive system of Pd/Fe bimetallic particles were investigated. The dechlorination reaction complied with pseudo-first-order kinetics.  相似文献   

3.
Pd/Fe bimetallic particles were synthesized by chemical deposition and used to dechlorinate 2,2',4,5,5'-pentachlorobiphenyl in soil. Batch experiments demonstrated that the Pd/Fe bimetallic particles could effectively dechlorinate 2,2',4,5,5'-pentachlorobiphenyl. Dechlorination was affected by several factors such as reaction time, Pd loading, the amount of Pd/Fe used, initial soil pH, and 2,2',4,5,5'-pentachlorobiphenyl concentration. The results showed that higher Pd loading, higher dosage of Pd/Fe, lower initial concentration of 2,2',4,5,5'-pentachlorobiphenyl and slightly acid condition were beneficial to the catalytic dechlorination of 2,2',4,5,5'-pentachlorobiphenyl. The degradation of 2,2',4,5,5'-pentachlorobiphenyl, catalyzed by Pd/Fe followed pseudo-first-order kinetics.  相似文献   

4.
The reduction of dichloroethane (DCE) and trichloroethylene (TCE) by bimetallic iron–nickel (Fe–Ni) nanoparticles has been studied in this study. The reduction mechanism involves hydrodechlorination at the iron–nickel interface. The Fe–Ni nanoparticles have been synthesised by the chemical reduction method and immobilised on to a polysulphone matrix. The as-synthesised nanoparticles and Fe–Ni immobilied polysulphone support have been characterised to establish the particle size of the nanoparticles, which are of the order of 36–41?nm, and the physical characteristics of the immobilised support. Batch experiments have been performed using gas chromatography-mass spectrometry to study the degradation of DCE and TCE. The studies have shown that the bimetallic system is quite effective in the dechlorination of DCE and TCE. Also, the stability of the nanoparticles in the matrix has been explored with respect to its suitability for use in the degradation of chlorinated hydrocarbons.  相似文献   

5.
Chitosan (CTS)-stabilized bimetallic nanoparticles were prepared at room temperature (rt.) in aqueous solution. Palladium (Pd) and platinum (Pt) were selected as the first metals while iron (Fe) and nickel (Ni) functioned as the second metals. In order to obtain the noble metal core-transition metal shell structures, bimetallic nanoparticles were prepared in a two-step process: the preparation of mono noble metallic (Pd or Pt) nanoparticles and the deposition of transition metals (Fe or Ni) on the surface of the monometallic nanoparticles. The structures of the nanoparticles were studied using X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). The XPS results show that Pd and Pt exist mainly in zero valences. The presence of Fe and Ni in the bimetallic nanoparticles affects the binding energy of Pd and Pt. Moreover, the studies of O 1s spectra indicate the presence of Fe or Ni shells. The analyses of TEM micrographs give the particle size and size distributions while the high-resolution TEM (HRTEM) micrographs show the existence of noble metal core lattices. The results confirm the formation of noble metal core-transition metal shell structures.  相似文献   

6.
A new approach for promoting ferric reduction efficiency using a different electrochemical cell and the photoelectro-Fenton process has been developed to degrade organic toxic contaminants. The use of UVA light and electric current as electron donors can efficiently initiate the Fenton reaction. 2,6-Dimethylaniline (2,6-DMA) was the target compound in this study. Effects of initial pH (pH(i)), Fe(2+) loading, H(2)O(2) concentration and current density were determined to test and to validate a kinetic model for the oxidation of organic compound by the electro-Fenton process. Kinetic results show evidence of pseudo-first-order degradation. When reaction pH was higher than 2, amorphous Fe(OH)(3(s)) was generated. Increasing ferrous ion concentration from 1.0 to 1.5 mM increased the hydroxyl radicals and then promote the degradation efficiency of 2,6-DMA. The optimal H(2)O(2) concentration for 2,6-DMA degradation in this study was 25 mM. The degradation of 2,6-DMA was increased with the increase of current density from 3.5 to 10.6 A/m(2). Oxalic acid was the major detected intermediate of 2,6-DMA degradation. The final TOC removal efficiencies were 10%, 15%, 60% and 84% using the electrolysis, Fenton, electro-Fenton and photoelectro-Fenton processes, respectively.  相似文献   

7.
In this paper, a simple method was presented to measure the concentration change in the Cr(VI)-contained waste water during treatment by nanoparticles, based on its optical absorption spectral evolution which exhibits a good linear relationship between the absorbance of the peak at 348 nm and Cr6+ ion concentration. The iron and Fe/Pd bimetal nanoparticles were prepared and used for removal of Cr6+ in waste water. It has been found that presented method for concentration determination based on optical spectral evolution is effective and flexible. The nanoparticles have higher efficiency than normal iron powders and Fe/Pd bimetallic nanoparticles show faster removal of the Cr6+ than iron nanoparticles. The study is of importance in environmental remediation or pollution treatment of heavy metal ions in water and even soil.  相似文献   

8.
There is now increasing concern regarding the effect of polybrominated diphenyl ethers (PBDEs) on the environment. These compounds are widely used as fire retardants and by the electronic industry. Our study examined the effects of adding different doses of BDE 15 and BDE 209 on the soil microbial activities and function by using denaturing gradient gel electrophoresis (DGGE), fluorescence in situ hybridization (FISH) and soil enzymatic activity analyses. Soils were spiked with 1, 10, and 100 mg kg(-1) BDE 209 and BDE 15, respectively, and incubated for up to 180 days. No degradation of BDE 209 was observed; however, about 40% of the added BDE 15 underwent declining extractable concentration. Bacterial counts were significantly higher in the microcosms amended with BDE 15, while the suppression effect increased as the BDE 209 concentration increased. Pseudomonas, Bacillus and uncultured bacteria dominated the bacterial communities in all soil treatments, and PCA analysis showed that high doses of BDE 209 and BDE 15 altered the soil microbial community structure. This study provides new information on the effect of higher and lower PBDEs on the soil microbial community in an aerobic environment.  相似文献   

9.
Monometallic and bimetallic M and M/Pd (M = Fe, Co, Ni) nanoparticles were prepared by pulsed Nd:YAG laser ablation of bulk M and Pd targets in acetone and transferred onto Si wafers to catalyze carbon nanotubes from decomposition of liquid petroleum gas via thermal chemical vapor deposition at 750°C. Transmission electron microscopy and optical extinction study revealed that the prepared M and M/Pd nanoparticles have rather spherical shape and their aspect ratios are nearly one. In comparison to monometallic M catalysts by addition of Pd, the average sizes of produced bimetallic M/Pd catalysts increased. Carbon nanotubes' characterization revealed that by addition of Pd to laser ablated M catalysts the average diameter, the yield, and quality of end product carbon nanotubes were increased. The average diameter of grown carbon nanotubes increases as: Ni < Ni/Pd < Co < Co/Pd < Fe < Fe/Pd and the quality of them increases as: Ni < Co < Fe < Ni/Pd < Fe/Pd < Co/Pd.  相似文献   

10.
Polybromodiphenyl ethers (PBDEs) are widely used flame retardant additives and have been mainly used in polymers for many plastic and electronic products. PBDEs have been found to bioaccumulate in both aquatic and terrestrial ecosystems and even human bodies. The technical product with the highest use is decabrominated diphenyl ether (BDE-209). Therefore, we chose to examine the solar and UV-lamp degradation of BDE-209. A linear increase of the photodegradation rate constant for BDE-209 was observed with the solar light intensity. The degradation reactions follow the pseudo-first-order kinetics. The photodegradation of BDE-209 produced other less brominated diphenyl ethers under ultraviolet light exposure, suggesting that the photodegradation of BDE-209 is a sequential dehalogenation mechanism. BDE-209 underwent rapid reductive debromination in these photodecomposition experiments. The formation rate constants of three nonabromodiphenyl ethers increase with the order of BDE-206, BDE-207 and BDE-208, indicating debromination mainly occurred at para>meta>ortho positions. These findings of the process properties and reductive debromination mechanism of the photolytic degradation of PBDEs can facilitate the design of remediation processes and also aid in predicting their fate in the environment.  相似文献   

11.
Bimetallic nanoparticles, a new class of materials for catalysis, were intensively investigated. Highly dispersed Ir–Ni bimetallic nanoparticles with varying mole fractions were synthesized by modified polyol reduction method from the solution of iridium trichloride and nickel chloride in ethylene glycol, which acts as both solvent and reducing agent. The particles were characterized for their size, morphology and composition using various techniques like UV–Vis, Fourier transform infrared (FT-IR), X-ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM) and X-ray photo electron spectroscopic (XPS) techniques. The synthesized nanoparticles were in pseudo-spherical morphology and utilized as catalyst for the degradation of dyes. The feasibility of degradation of an azo dye i.e., metanil yellow (MY) in aqueous alkaline medium by hexacynoferrate (III) ions using Ir–Ni bimetals as catalyst, prepared in different molar ratios, was investigated. Results show that Ir–Ni (2:1) bimetals have good catalytic activity and degradation as compared to Ir–Ni (1:2) due to their small size and high stability for the oxidation of MY.  相似文献   

12.
以直流电弧等离子体法制备(Fe,Ni)的纳米粒子为前驱体,分别在350℃、400℃和450℃的氨气气氛中,通过热氨解反应合成(Fe,Ni)_4N包覆(Fe,Ni)纳米复合粒子。应用XRD,TEM,VSM,微波矢量网络分析仪对纳米粒子相成分、形貌、磁性和电磁参数进行了分析。结果表明,形成了(Fe,Ni)_4N包覆(Fe,...  相似文献   

13.
Degradation of diuron in aqueous solution by gas-liquid hybrid discharge was investigated for the first time. The effect of output power intensity, pH value, Fe(2+) concentration, Cu(2+) concentration, initial conductivity and air flow rate on the degradation efficiency of diuron was examined. The results showed that the degradation efficiency of diuron increased with increasing output power intensity and increased with decreasing pH values. In the presence of Fe(2+), the degradation efficiency of diuron increased with increasing Fe(2+) concentration. The degradation efficiency of diuron was decreased during the first 4 min and increased during the last 10 min with adding of Cu(2+). Decreasing the initial conductivity and increasing the air flow rate were favorable for the degradation of diuron. Degradation of diuron by gas-liquid hybrid discharge fitted first-order kinetics. The pH value of the solution decreased during the reaction process. Total organic carbon removal rate increased in the presence of Fe(2+) or Cu(2+). The generated Cl(-1), NH(4)(+), NO(3)(-), oxalic acid, acetic acid and formic acid during the degradation process were also detected. Based on the detected Cl(-1) and other intermediates, a possible degradation pathway of diuron was proposed.  相似文献   

14.
Guo J  Du Y  Lan Y  Mao J 《Journal of hazardous materials》2011,186(2-3):2083-2088
In this study, the photodegradation process of methyl orange (MO) catalyzed by Fe(III) and citric acid and the reaction kinetics were investigated in detail at pHs from 2 to 8. The results show that the photodegradation of MO is slow in the presence of Fe(III) or citric acid alone. However, it is markedly enhanced when Fe(III) and citric acid coexist. High initial citric acid or initial Fe(III) concentrations lead to increased photodegradation of MO. And Fe(III) citrate mediated photodegradation of MO is optimized at pH 6. The photoproduction of hydroxyl radicals (·OH) in different catalytic systems was determined by HPLC. And the concentrations of Fe(II) and citric acid concentration in the process of the reaction were analyzed. The photodegradation of MO obeys to pseudo-zero order kinetics with respect to MO and the degradation reaction occurs in two phases. At the initial initiation stage, degradation rate is relatively slow, and significantly increases at a later acceleration stage.  相似文献   

15.
The photolysis and photo-catalysis of ferrioxalate in the presence of hydrogen peroxide with UV irradiation (UV/ferrioxalate/H(2)O(2) process) for treating the commercial azo dye, reactive Black B (RBB), is examined. An effort is made to decolorize textile effluents at near neutral pH for suitable discharge of waste water. pH value, light source, type of initial catalyst (Fe(3+) or Fe(2+)) and concentration of oxalic acid (Ox) strongly affected the RBB removal efficiency. The degradation rate of RBB increased as pH or the wavelength of light declined. The optimal molar ratio of oxalic acid to Fe(III) is three, and complete color removal is achieved at pH 5 in 2h of the reaction. Applying oxalate in such a photo process increases both the RBB removal efficiency and the COD removal from 68% and 21% to 99.8% and 71%, respectively.  相似文献   

16.
The kinetics and mechanism of reductive destruction of aqueous polybrominated biphenyl (PBB) were studied. Complete degradation was achieved within 30 min of ultrasound-assisted chemical process (UACP), which involved sonication, ketyl radical and its anion, and metal catalyst (ferrous ion). Reductive dehalogenation of PBB is a first-order reaction between PBB concentration and UACP reaction time. The kinetic condition of PBB degradation was optimized in terms of temperature, dosage of radical initiator, and metal catalyst. Mechanism of reductive debromination was also proposed to explain the function of ketyl and aryl radicals on the debromination of bromobiphenyl. Two kinetic models were studied to elucidate the debromination mechanism pathway. Laboratory observed data were found to fit model predicted values obtained from equilibrium and differential equations.  相似文献   

17.
The removal of Ni(II) from aqueous solution by magnetic nanoparticles prepared and impregnated onto tea waste (Fe(3)O(4)-TW) from agriculture biomass was investigated. Magnetic nanoparticles (Fe(3)O(4)) were prepared by chemical precipitation of a Fe(2+) and Fe(3+) salts from aqueous solution by ammonia solution. These magnetic nanoparticles of the adsorbent Fe(3)O(4) were characterized by surface area (BET), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and Fourier Transform-Infrared Spectroscopy (FT-IR). The effects of various parameters, such as contact time, pH, concentration, adsorbent dosage and temperature were studied. The kinetics followed is first order in nature, and the value of rate constant was found to be 1.90×10(-2) min(-1) at 100 mg L(-1) and 303 K. Removal efficiency decreases from 99 to 87% by increasing the concentration of Ni(II) in solution from 50 to 100 mg L(-1). It was found that the adsorption of Ni(II) increases by increasing temperature from 303 to 323 K and the process is endothermic in nature. The adsorption isotherm data were fitted to Langmuir and Freundlich equation, and the Langmuir adsorption capacity, Q°, was found to be (38.3)mgg(-1). The results also revealed that nanoparticle impregnated onto tea waste from agriculture biomass, can be an attractive option for metal removal from industrial effluent.  相似文献   

18.
The sonolysis of Basic Blue 41 dye in aqueous solution was performed at 35 kHz using ultrasonic power of 160 W and aqueous temperature of 25+1 degrees C within 180 min. The TiO2 nanoparticles were used as a catalyst to assist the sonication process. The effect of experimental parameters such as pH, H2O2 concentration and initial dye concentration on the reaction were investigated. It was recognized that in lower pH values the dye removal rate decreased. However, dye removal increased via increase in H2O2 concentration and lowering the initial dye concentration. All intermediate compounds were detected by integrated gas chromatography-mass spectrometry (GC/MS) and also ion chromatograph (IC). During the decolorization, all nitrogen atoms and aromatic groups of Basic Blue 41 were converted to urea, nitrate, formic acid, acetic acid and oxalic acid, etc. Kinetic studies revealed that the degradation process followed pseudo-first order mechanism with the correlation coefficient (R2) of 0.9918 under experimental conditions. The results showed that power ultrasound can be regarded as an appropriate tool for degradation of azo dyes to non-toxic end products.  相似文献   

19.
We present a simple and straightforward approach for the synthesis and stabilization of relatively monodisperse Ag, Au and bimetallic (Ag/Au) nanoparticles by using cruciferous vegetable (green/red) extracts by simply adjusting the pH environment in the aqueous medium. The vegetable extracts act both as reducing and capping agents. The monometallic and bimetallic nanoparticles of Ag and Au so obtained were characterized by UV–visible spectroscopy, X-ray diffraction (XRD), dynamic light scattering (DLS) and transmission electron microscopy (TEM). It is shown that red cabbage extract can be used for the preparation of anisotropic Au nanoparticles. The formation of Au anisotropic nanoparticles was found to depend on a number of environmental factors, such as the pH of the reaction medium, reaction time, and initial reactant concentrations. Additionally, it is shown that these extract-stabilized Au and Ag nanoparticles can be used as a seed for preparation of bimetallic Au/Ag nanoparticles. For bimetallic alloy nanoparticles the absorption peak was observed between the two maxima of the corresponding metallic particles. The surface plasmon absorption maxima for bimetallic nanoparticles changed linearly with increasing Au mole ratio content in various alloy compositions. It has been shown that the formation of hollow Au spheres depends on the experimental conditions.  相似文献   

20.
The photocatalytic oxidation of 1,3-dichloro-2-propanol (1,3-DCP) was studied by following the target compound degradation, the total organic carbon removal rate and by identifying the oxidation products. The reaction was performed in a batch recycle reactor, at room temperature, using UV radiation, H2O2 as oxidant, and immobilized TiO2 as catalyst. 1,3-Dichloro-2-propanone, chloroacetyl-chloride, chloroacetic acid, formic and acetic acid were detected as reaction intermediates and a possible pathway for the oxidation of 1,3-dichloro-2-propanol is proposed. The effect of the oxidative agent's initial concentration was investigated and it was established that higher concentrations of H2O2 slow down the reaction rate. The investigation of the effect of the 1,3-DCP initial concentration showed no influence on the degradation process. The carbon and chloride ion mass balance calculations confirmed the fact that chlorinated intermediates are formed and that they degrade with a lower rate than 1,3-DCP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号