首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 93 毫秒
1.
惰气熔融-热导法测定钒氮合金中氮   总被引:2,自引:2,他引:2       下载免费PDF全文
用EMGA 620W氧氮分析仪测定钒氮合金中的氮量,采用基准试剂和标钢校准仪器,通过试验研究,找出分析的最佳条件。本方法分析结果与化学法一致,氮的加标回收率为98.0%~99.2%,相对标准偏差小于0 61%。本法用于钒氮合金中氮的测定,结果令人满意。  相似文献   

2.
钟华 《冶金分析》2010,30(3):64-67
研究了用氧氮分析仪测定氮化铬铁中氮的最佳工作条件,并重点对方法的准确性进行了讨论。利用氮化硅粉和氮化锰铁两种高氮标样分别建立了两条校正曲线,结果表明两条校正曲线间存在较大的系统误差。用测定硝酸盐基准试剂中氮量对两条校正曲线的准确性进行了验证,结果表明氮化硅粉校正曲线的准确度较高,硝酸银和硝酸钾中氮的回收率分别达到99%、98%,而用氮化锰铁校正曲线计算得到的回收率仅为94%。采用惰气熔融-热导法测定样品,方法的相对标准偏差为0.17%~0.45%,分析结果与蒸馏滴定法测定结果一致。  相似文献   

3.
惰气熔融-热导法测定钛铁中氮   总被引:1,自引:1,他引:0       下载免费PDF全文
王伟  曹忠孝  王俊 《冶金分析》2010,30(9):62-64
讨论了影响氧氮联测仪测定钛铁中氮的分析工作条件,采用惰气熔融-热导法测定钛铁中氮。结果表明:采用带盖镍囊包裹样品,在称样量和镍助熔剂加入量之比为1∶4.5,分析功率为5 000 W的条件下,应用纯硝酸钾建立氮的校准曲线,回归方程为y=0.924x-0.001 56,相关系数r=0.999 0。用本方法测定钛铁试样10次,得到的相对标准偏差(RSD)≤3.2%,加标回收率在97%~102%之间。  相似文献   

4.
惰气熔融-热导法测定金属硅中氮   总被引:1,自引:1,他引:0       下载免费PDF全文
研究了用TC600氧氮测定仪测定金属硅中氮的最佳工作条件。结果表明:在称样量为0.10 g,分析功率为4 750 W,比较器水平为6的条件下测定,可以得到满意的分析结果。应用硝酸钾标准溶液建立工作曲线,曲线的回归方程为y=0.985 8x+0.000 017,相关系数r=0.999 8。用本方法测定金属硅试样10次,得到的相对标准偏差(RSD)≤4.3%,加标回收率在96.6%~108.2%之间。  相似文献   

5.
氮含量是衡量炼钢促进剂性能的重要参数之一,测定炼钢促进剂中氮含量十分必要。称取0.10 g样品于锡箔中,包裹住样品,将其压紧封口后装入镍篮中,投入石墨套坩埚内进行测定,以能覆盖炼钢促进剂中氮含量范围且氮含量呈一定阶梯水平的铁屑粉、氮化锰铁、高氮铬铁和钒氮合金粉末状标准物质绘制校准曲线,建立了惰气熔融-热导法测定炼钢促进剂中氮含量的方法。在优化的实验条件下,样品中氮含量与其对应的峰面积呈良好的线性关系,校准曲线的相关系数为0.999 3,方法检出限为0.003%,方法定量限为0.010%。分别采用实验方法对4个炼钢促进剂样品中氮含量平行测定7次,测定结果的相对标准偏差(RSD)在0.91%~1.7%之间。分别称取2个0.05 g炼钢促进剂样品,加入约0.05 g铁屑粉标准物质或高氮铬铁标准物质进行加标回收试验,加标回收率为95%~102%。  相似文献   

6.
惰气熔融-热导法测定氮化硅铁中氮   总被引:1,自引:1,他引:0       下载免费PDF全文
杨帆 《冶金分析》2008,28(5):1-1
研究了用ON-2008氧氮分析仪和惰气熔融-热导法测定氮化硅铁中氮的最佳条件。当称样量为0.100 g,分析功率为5 500W,分析气流量为0.3 L/min,等待、加热和采样时间分别为40 s,50 s,60 s,并采用镍箔作浴料时,可以得到满意的分析结果。用本实验的方法和仪器对-氮化硅铁样品中氮进行测定,得到氮的测定值为27.52%,相对标准偏差为0.46%,与国外某一型号仪器或蒸馏-滴定法得到结果一致。  相似文献   

7.
对惰气熔融热导法测定钢铁中氮的不确定度的产生原因进行了分析,并对一个钢样中氮的不确定度进行了评定。最终给出评定结果。  相似文献   

8.
目前铝钒合金中氮的测定方法没有相应的国家标准或者行业标准,因此建立了测定铝钒合金中氮含量的方法。对惰气熔融-热导法测定铝钒合金中氮的分析条件进行了探讨。称取0.07g铝钒合金样品,放入镍篮,投入脱气后的石墨套坩埚中,控制分析功率为5.0kW,氮积分时间为60s,以钛合金标样进行仪器校准,可实现惰气熔融-热导法对铝钒合金中氮含量的测定。方法检出限为0.000 12%,以空白标准偏差的10倍计算出氮的定量限为0.000 4%。采用实验方法对两个铝钒合金实际样品中氮进行测定,测定结果的相对标准偏差(RSD,n=11)为6.9%~11%,加标回收率在94%~107%。  相似文献   

9.
钟华 《冶金分析》2013,33(1):43-45
对惰气熔融-热导法测定碳化钽粉中氮量的分析方法进行了研究。针对碳化钽粉难熔的特点,对石墨坩埚类型、镍助熔剂、石墨粉用量和样品量等测试条件进行了优选。确定的最佳分析方法为,称取0.10~0.12 g样品于0.35 g镍囊中,投入装有0.03 g石墨粉的高温型石墨坩埚中进行测定,分析功率为5.2 kW。用钢标样确定氮工作曲线的校正系数,氮的加标回收率在94%~108%之间。采用本方法测定了2个碳化钽粉中氮量,测定值与GB/T 15076.13-1994(蒸馏分离-奈斯勒试剂分光光度法)吻合,相对标准偏差(n=8)≤3.0 %。  相似文献   

10.
程晓舫  缪琳 《冶金分析》2004,24(Z2):723-725
对惰气熔融热导法测定钢铁中氮的不确定度的产生原因进行了分析,并对一个钢样中氮的不确定度进行了评定,给出评定结果.  相似文献   

11.
本文针对金属纤维铁铬铝(FeCrAl)中的氮含量进行研究,建立了惰气熔融-热导法测定金属纤维FeCrAl中氮含量的新方法。研究了不同助熔剂、称样量、分析时间及比较器水平对实验结果的影响。确定采用镍做助熔剂,称样量为0.1 g,分析时间为55 s,比较器水平为1的条件对金属纤维FeCrAl中的氮含量进行测定。本方法测定的氮含量相对标准偏差为4.6%,所得数据重复性好、结果可靠;该方法操作简单、分析速度快。  相似文献   

12.
对脉冲加热惰气熔融-热导法测定增碳剂中氮含量的实验条件进行优化,确定增碳剂样品制备后必须在100~110 ℃烘箱中烘干,且对样品进行研磨后过120 μm筛的样品处理方式;优化后仪器的分析功率设为4.5 kW,且使用镍箔做助熔剂,样品中氮的释放比较完全。采用组成和结构与增碳剂很接近的煤标样绘制氮的校准曲线,线性相关系数R2=0.993。氮检出限为0.000 06%,测定下限为0.000 2%。对增碳剂样品进行精密度考察,结果的相对标准偏差(RSD,n=7) 不大于3.4%;对实际样品进行测定,结果同脉冲熔融-飞行时间质谱法的测定结果一致。  相似文献   

13.
钛合金中氧、氮和氢的含量对其力学性能影响很大,因此,需要对其准确测定.采用氢氟酸和硝酸体积比为1∶3的酸洗液清洗样品后再用无水乙醇浸泡的方法处理样品,测氧和氮时样品质量选择0.10g,测氢时样品质量选择0.20g,以镍篮为助熔剂,实现了惰气熔融-热导/红外法对钛合金中氧、氮和氢的测定.试验表明,样品放置4h与放置1d,...  相似文献   

14.
以合适的钛合金标准样品绘制校准曲线,用惰性气体熔融-热导/红外法测定,建立了钛合金中氧、氮和氢的同时测定方法。确立了最佳实验条件:对于0.13~0.15 g试样, 镍篮助熔剂的用量为1 g,分析功率为0.55 kW。氧、氮和氢的线性范围分别为0.000 1%~0.1%、0.000 1%~0.01%和0.000 05%~0.002%(质量分数),方法检出限分别为0.000 045%、0.000 061%和0.000 018%(质量分数)。采用实验方法测定钛合金实际样品中氧、氮和氢,测定结果与国家标准方法(GB/T4698.7-2011和GB/T4698.15-2011)的测定结果基本一致,相对标准偏差(RSD, n=6)在0.14%~4.6%范围。  相似文献   

15.
通过锉刀锉去样品表面污物、丙酮清洗、自然风干方式对样品进行预处理,在高纯镍篮中加入样品,建立了惰气熔融红外/热导法测定钽钨合金中氧和氮含量的检测方法。探讨了助熔剂、分析功率、称样量等对试验结果的影响,实验选择在助熔剂为镍篮,分析功率为5.0 kW,称样量约为0.10 g的条件下进行。使用钛合金标样GBW(E)020188进行校准,以另一锆合金标样AR640进行验证,标样中氧和氮的测定结果分别在标准值范围之内。在优化的条件下进行测定,氧和氮的检出限分别为0.000 13%和0.000 04%,定量限分别为0.000 44%和0.000 13%。按照实验方法对钽钨合金进行分析,氧和氮测定结果的相对标准偏差(RSD,n=11)分别为6.6%和11.2%,加标回收率分别为93%~102%和95%~103%。  相似文献   

16.
蔺菲  王蓬  李朝  李冬玲  赵雷 《冶金分析》2018,38(7):38-43
采用在冰醋酸(1+4)中煮沸2~3min,并用无水乙醇洗涤、干燥的方式对样品表面进行处理,以超高纯镍篮为助熔剂包裹样品,实现了惰气熔融-红外吸收/热导法对铜铬合金中氧和氮的测定。为了与样品中氧和氮的释放率保持一致,选择与样品基体较为匹配的金属铬作为校准物质建立校准曲线,氧和氮校准曲线的相关系数分别为0.9937和0.9936,氧和氮的测定下限分别为0.0019%和0.00012%。对实验方法进行精密度考察,氧和氮测定结果的相对标准偏差(RSD,n=11)分别为3.4%~3.6%和5.0%~5.9%。将实验方法应用于铜铬合金样品分析,并分别向其中加入金属铬控样GSB(2016-4)进行加标回收试验,结果表明,氧的回收率为98%~103%,氮的回收率为96%~104%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号