首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《电世界》2020,(4)
正输配电网普遍使用12 kV交流真空断路器投切电力电容器进行无功补偿,以提高电网的功率因数,节能降损,改善电能质量。通用12 kV交流真空断路器投切电力电容器存在涌流、重燃、非保持破坏性放电(NSDD)[1]等问题。采用双断口投切电力电容器的交流真空断路器能提高真空断路器容性电流的开合能力及动态耐压水平,显著降低重击穿概率[2]。双断口技术增加了交流真空断路器的复杂性和成本,减少了投切电力电容器过程中的重燃与NSDD,对合闸涌流影响不  相似文献   

2.
《高压电器》2017,(8):1-8
为探究继电保护动作时,真空断路器开断35 kV并联电容器时过电压产生机理和改进现有仿真模型的不足,笔者简单综述了真空断路器开断电容器组的仿真研究现状,基于ATP-EMTP电磁暂态仿真软件,搭建了真空断路器投切35 kV电容器组的三相电路并考虑了三芯电缆、断路器三相间的耦合参数。模拟了继电保护动作时,真空断路器快速合—分闸电容器组的操作,并仿真了首开相重燃、两相同时重燃、母线对地电容瞬间变化等因素对投切电容器组过电压的影响。仿真结果表明:继电保护动作,母线对地电容发生瞬间性变化导致"虚拟截流"现象以及多相重燃是事故的主要原因。最后提出几点开断并联电容器过电压的抑制措施。  相似文献   

3.
某500 kV变电站利用SF 6断路器投切35 kV并联电容器组时,连续发生2起串联电抗器设备故障,分析原因是在投切操作过程产生了较大的涌流及过电压,引起干式空心电抗器发生匝间短路故障,严重威胁系统的安全运行。为了避免此类故障的再次发生,提出采用适用于投切35 kV并联电容器组的智能相控断路器来抑制合闸涌流,降低分闸重燃概率。为验证智能相控断路器的有效性,首先分析了投切涌流及过电压产生的原因和相控开关技术的原理,然后将智能相控断路器应用于该500 kV变电站的35 kV无功补偿系统,并分别对智能断路器与普通断路器进行多次分合闸对比试验,试验结果表明:普通断路器随机投切电容器组产生的最大涌流为4.2(标幺值,下同),过电压为1.81;智能相控断路器投切电容器组产生的最大涌流为2.3,过电压为1.4。试验结果证实智能相控断路器的应用能够从源头抑制合闸涌流和过电压,提高无功投切效率和系统安全性。  相似文献   

4.
苑舜 《电气开关》1996,(1):18-21
本文研究了真空断路器投切电容器组时出现的重燃和过电压等问题,对影响真空断路器投切电容器组的因素进行了分析,目的在于更进一步完善真空断路器技术性能和提高投切电容器组的能力。  相似文献   

5.
由于真空断路器在合闸过程中可能出现断口预击穿、合闸弹跳、合闸不同期等问题,而分闸过程中可能会出现单相、两相重燃、截流等问题。这些问题都会在真空断路器投切电容器组过程中产生严重的过电压。目前电容器组过电压保护通常采用的金属氧化物避雷器的I型接线并不能完全有效的限制真空断路器因上述问题而产生的过电压。为此设计出新型电容器组过电压保护器,与电容器组串联电抗器并联安装,并进行了现场投切电容器组试验。试验结果表明,对电容器组投切过程中因异常工况所造成的过电压确实起到了限制作用,特别是明显降低了电容器组切除过程中因截流和两相重燃所产生的较高的极间过电压,过电压保护器还可吸收因开关断口预击穿所产生的快波前过电压的能量。过电压保护器的安装,对系统内其它电容器组投切所产生的过电压也有抑制作用。  相似文献   

6.
《大众用电》2006,(12):42-42
要实现电容器组自动投切,投切开关的选择很重要,以前主要用断路器和真空接触器。断路器由于体积大、寿命短、价格高等因素的影响,其使用范围一直受到限制;真空接触器在投切电容器时产生过电压,短路关合能力不强,开断电容器组时有一定的重燃率,据统计,真空开关系列其重燃率可达到1%~10%.  相似文献   

7.
根据真空断路器投切电容器组的特点,结合目前国内型式试验与老炼试验的现状,分析了真空断路器性能投切电容器组时可能影响重燃的因素,特别是机构的主要技术指标及性能稳定性造成产生重燃的原因,提出了应关注的对策。  相似文献   

8.
一起并联电容器分闸多次多相重击穿故障分析   总被引:1,自引:0,他引:1  
在变电站补偿电容器损坏经常发生,特别是在使用真空断路器切除无功补偿用并联电容器时,这严重影响了并联电容器的安全运行。本文针对一起较为少见的并联电容器组分闸多次多相重击穿故障,结合故障录波数据及对故障电容器的解体检查,用ATPDraw仿真程序模拟了这一过程,分析认为电容器用真空断路器分闸时多次重击穿产生的过电压及涌流是电容器绝缘击穿故障的主要原因,降低投切电容器用真空断路器的重燃率对于减少并联电容器故障至关重要。  相似文献   

9.
<正>【问】真空断路器切投电容器组时,为什么会发生“延时重击穿”现象? 【答】真空断路器灭弧后的介质恢复速度高达20~25kV/μs,远高于10kV电容器组开断后的电压恢复速度,理应不会发生重燃。而事实并非如此。而且真空断路器的重燃机理又与油断器有着很大的不同。油断器的重燃一般都发生在灭弧后5~10ms间。而真空断路器的重燃大多发生在灭弧后几十~几百ms间,有的甚至长达数s。这种现象称为真空断路器的“延时重击穿”。 真空间隙电击穿的原因,有许多不同的说法。目前一般认为有两种:场致发射引起电击穿和微粒引起电击穿。10kV真空断路器的开距一般都大于10mm。弧后出现的重击现象又是动态真空绝缘破坏的典型情况,因而10kV真空断路器在切合电容器组时发生的“延时重击穿”现象,用微粒引起的电击穿来说明比较适合。  相似文献   

10.
本文以一个变电站六组10kV电容器组的投切试验中,电容器的极间发生3倍以上的两相重燃过电压现象为例,通过对真空开关投切电容器重燃问题的分析,认为在10kV电容站设置两相重燃保护是有必要的。并就保护的措施进行了若干探讨。  相似文献   

11.
《高压电器》2017,(3):167-171
为了降低真空灭弧室在投切背对背电容器组时的重燃率,文中采用试验的方法,研究了电压老炼、电流老炼和纳秒脉冲老炼对40.5 kV真空灭弧室投切背对背电容器组的影响,得出了老炼方式对40.5 kV真空灭弧室投切背对背电容器组的影响。纳秒脉冲老炼可以比较均匀的覆盖整个触头表面,而电压老炼和电流老炼只能覆盖触头表面的局部。纳秒脉冲老炼的真空灭弧室一次性通过投切背对背电容器组试验,电流老炼的真空灭弧室完成16次投切背对背电容器组试验后发生重燃,电压老炼的真空灭弧室完成一次投切背对背电容器组后300 ms发生重燃。  相似文献   

12.
目前,在我国电力系统中,并联补偿电容器越来越广泛的在系统中得到应用以补充系统无功的不足,降低线损提高系统运行可靠性。但由于目前用于投切并联电容器装置的断路器或多或少都存在有一定的重燃率,如果断路器在开断电容器装置时发生重燃则会在并联电容器装置上产生很高的过电压。对于投切并联电容器装置时所产生的重燃过电压,目前都是采用氧化锌避雷器保护,但就目前现有可行的保护都无法对两相重燃过电压进行有效的限制,因此在现有条件下有必要对并联电容器装置的两相重燃过电压及保护问题进行研究和探讨,以便得出关于两相重燃过电压及保护的正确结论。  相似文献   

13.
戴俊 《电气时代》2013,(6):80-81
针对40.5kV真空断路器在投切电容器组时产生的重燃现象,从真空断路器内部结构和开断过程进行了分析。从触头材料、触头的分离速度的选择等方面采取了措施,并建议下一步采取措施以提高其可靠性。  相似文献   

14.
《电世界》2016,(5)
正由于真空断路器具有体积小、灭弧性能好、寿命长、维护量小、使用安全、环保,特别是适用于频繁操作的特点,在并联电容器装置中普遍采用真空断路器来投切电容器组。开断电容器组发生重击穿时会产生高幅值的重击穿过电压,这将威胁装置和系统的安全,因此要求投切电容器组的真空断路器无重击穿(或低重击穿率)性能。但真空断路器在投切电容器组时不可能做到无重击穿,IEC62271-100:2012和GB 1984—2003《高压交流断  相似文献   

15.
根据真空断路器投切电容器组型式试验与老炼试验情况调查,分析了影响重燃的因素及重燃率上升原因,提出降低的方法和对策。  相似文献   

16.
真空断路器投切电容器时的重燃过电压分析及预防措施   总被引:1,自引:0,他引:1  
介绍真空断路器投切电容器时产生的过电压种类,采用PSCAD/EMTDC软件对真空断路器操作电容器时产生的重燃过电压进行仿真,分析过电压的产生机理,提出预防重燃过电压产生的有效措施,以保证设备的安全和系统的稳定运行。  相似文献   

17.
通过对电容器合闸涌流的计算、电容器熔丝重击穿和真空断路器发生重击穿的分析研究,解释一起由于误合故障电容器而引起10 kV电容器组熔断器“群爆”、真空断路器损坏的事故发生原因,进而提出选用优质真空断路器、自动投切电容器主站应具有闭锁回路、电容器的外熔丝选用性能较好的熔断器等,以避免此类事故重复发生.  相似文献   

18.
真空断路器电容器回路故障原因分析   总被引:2,自引:1,他引:1  
通过对电容器组回路投(切)时的暂态过程分析得出断口存在2倍恢复电压,合闸冲击电流超过20倍以上的运行条件。利用平均轨迹图解分析法对10 kV真空断路器的触头运动过程进行了分析,得出存在"慢分状态"和"慢合状态"缺点,因此存在分闸重燃和合闸损坏的可能性。重燃的后果是使断口后端电容器等设备损坏而自身无损。分析认为断路器电容器两类事故归因于断路器与投切电容器组不相适应的结构设计,因此呼吁制造、运行单位协同解决,使真空技术为电力系统所使用。  相似文献   

19.
文中以某220 kV变电站20 kV系统侧由真空断路器开断并联电抗器过电压引发的事故进行了分析。基于电路理论阐述了真空断路器投切并联电抗器过程中的截流、复燃、多次重燃过电压产生的机理,运用PSCAD建立了20 kV系统电磁暂态仿真模型,对不同截流值、不同并联电容下系统母线侧与电抗器侧的过电压进行了计算。结果表明常规氧化锌避雷器只能限制过电压幅值,不能改变频率和陡度,且现有避雷器均为相对地避雷器,不能有效地抑制相间过电压;电抗器两端加装并联电容器(或阻容吸收装置)可降低过电压幅值和陡度,能较好地抑制真空断路器投切电抗器过电压。  相似文献   

20.
真空断路器投切电容器组试验验证   总被引:3,自引:1,他引:3  
为寻找真空断路器投切电容器组时发生爆炸的原因,在运行电网上进行了10kV真空断路器投切电容器组的试验,5组样机为不同批号和洁净度的真空灭弧室,将其安装于同一组真空断路器上投切同一组电容器组,通过分析试验结果,得到结论:爆炸原因是真空断路器投切电容器组时发生重击穿并产生较高的过电压;真空灭弧室内部洁净度是影响真空断路器投切电容器组重击穿率的重要因素;真空断路器在投运前进行50次以上的电气老练试验是必要的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号